
What is the tradeoff when opting for asynchronous
communication within a microservice architecture?

S tudy Programm Digital Sciences - Master
at the Faculty of Computer Science and Engineering
of the Technical University of Cologne

submitted by:
Name: Marc Kevin Zenzen
Student-No.: 11131724

Name: Luca Stamos
Student-No.: 11132237

Name: Stefan Steinhauer
Student-No.: 11132517

submitted to: Prof. Dr. Stefan Bente

Gummersbach, 16.02.2023

Abstract I

Abstract

When making decisions within a software architecture, there is no right or wrong, there
are only tradeoffs. This also applies to the communication between microservices. In this
paper, the tradeoff of asynchronous communication is examined using various architectural
properties in the example of an eCommerce application. After evaluating these properties,
the decisions to be made are explained. Then, guiding principles are given based on which
the decision making is supported. Finally, the eCommerce application is developed to
prove the conclusions drawn in this thesis.

Contents II

Contents

Abstract I

List of Figures IV

1 Introduction 1

2 Fundamentals 2
2.1 Event based architecture . 2
2.2 Microservices . 2
2.3 Communication . 3

2.3.1 Communication vs. Protokoll . 3
2.3.2 Synchronous Communication . 3
2.3.3 Asynchronous Communication . 4

3 Investigation using the example of an eCommerce application 5
3.1 Domain description . 5
3.2 Derive architectural properties from domain-specific requirements 6
3.3 Tradeoff ASYNC . 9

3.3.1 Error handling . 9
3.3.2 Performance . 9
3.3.3 Availability . 10
3.3.4 Testability/Maintainability . 10
3.3.5 Data loss . 10
3.3.6 Extensibility . 10
3.3.7 Scalability . 11
3.3.8 Responsiveness . 11
3.3.9 Consistency . 11
3.3.10 Resilience . 12
3.3.11 Business aspect . 12

4 Decisions 13
4.1 Shop owner adds, updates or removes product or offering 13
4.2 Customer adds or removes item to/from shopping basket 14
4.3 Customer places order . 14
4.4 Customer pays order . 14
4.5 Customer does not pay order . 14
4.6 Shop owner checks order status . 15
4.7 Decision Tree . 15
4.8 Preparing the Coding Exercise . 16

5 Coding Exercise and Evaluation 17
5.1 Extensibility . 18

5.1.1 Adding an additional service: Order archiving 18
5.2 Resilience-Tests . 18

Contents III

5.2.1 1. Test: Order archiving service fails 18
5.2.2 2. Test: Order service fails . 18
5.2.3 3. Test: Payment service fails . 18
5.2.4 4. Test: Offering service fails . 19
5.2.5 5. Test: Customer service fails . 19
5.2.6 6. Test: Kafka fails . 19
5.2.7 Resilience Tests Conclusion . 20

5.3 Effort . 21
5.4 Evaluation Conclusion . 23

6 Conclusion 24

7 Outlook 25

Appendix 27
.1 Developer Diary (devlogs) . 27

List of Figures IV

List of Figures

1 ECommerce Domain . 5
2 Use Case Diagram . 6
3 Responsiveness between two services with a async communication (Richards,

2020, p. 201) . 11
4 Microservice Architecture . 13
5 Decision Tree Guiding Questions . 15
6 Decision Tree Properties . 15
7 Microservice Architecture with broker . 16
8 Microservice Architecture with broker . 17
9 The figure shows the runnability of the individual functions in relation to

crashed services, where the x-axis contains the service that crashed and the
y-axis describes the behavior of the functions. Runs means, the function
continues to run without degradation, Error means, the function is no longer
available. Delayed means, the function can be executed, but the processing
of the data happens only as soon as the corresponding service is running
again. 20

10 Future microservice architecture . 25

1 Introduction 1

1 Introduction

When planning projects, software architects have to decide which services of their appli-
cation should work synchronously and which asynchronously. For the majority of cases,
however, it is not possible to simply Google for an answer as to which decision is the right
one, since such a decision is never unambiguous, but always involves a compromise. So
the decision always depends on the current circumstances. But on which exactly and how
should these influence the decision of a software architect? Using a simplified eCommerce
application, this paper examines various architectural properties and their influence on de-
cisions regarding communication between microservices, more specifically: the advantages
or disadvantages of asynchronous versus synchronous communication of services.

With synchronous communication within microservices „Everything fails, all the time“
(Vogels, 2022). Such and similar statements are frequently encountered, not least from
people like Werner Vogels, the CTO and vice president of Amazon. Indeed, some advan-
tages can be assumed for asynchronous communication. Processes are not blocked and
services are less strongly coupled.

First, the basics of microservices and the various forms of communication are explained.
The various microservices options are presented. In addition, the differences between the
various types of communication between microservices and the advantages and disadvan-
tages are shown. Then, the present domain of the simplified eCommerce application is
defined and described. For this purpose, a diagram of the domain is used, which shows the
different classes used and divides them into aggregates representing the services. There is
also a use-case diagram for the functions that a corresponding application must have. On
the basis of the present domain, various architectural properties are determined which are
to be examined in the following. Afterwards, individual aspects of the tradeoff between
synchronous and asynchronous communication are clarified and explained on the basis of
these determined properties. In the next section, the decisions to be made are shown,
which type of communication the service uses to each other. Reasons are collected and
summarized, which should help with the decision. Here the individual Business Events
are enumerated and explained before one is decided justified for one of the communica-
tion forms. In the last chapter, a coding experiment is started in which the information
gained is used to implement the simplified eCommerce application. The evaluation of the
experiment will confirm or contradict the decisions made in advance.

2 Fundamentals 2

2 Fundamentals

2.1 Event based architecture

The event-based architecture style is an asynchronous architecture style according to
Richards, 2020. This finds application in both small and large applications. „An event-
based architecture consists of decoupled event processing components that receive and
process events asynchronously (Richards, 2020, p. 183)“.

In most applications, the request-based model is used. Here, events are passed to
a request orchestrator so that actions can be executed later. The request orchestrator
distributes these requests deterministically and synchronously to different services. In
these services, the requests are finally processed, e.g. by reading or updating data from
a database. An example would be if a customer wanted to have his orders of the last six
weeks displayed. In the deterministic query, the data is returned to the customer. It is not
an event to which the system must respond.

An event-based model, on the other hand, responds to a specific situation and executes
one or more actions in response. An example of this would be when a customer places a
bid in an online auction. The bid is not a request to the system, but an event that occurs
after the customer has placed his bid. The system has to compare this bid with other bids
to find out who is the highest bidder.

The event-based style is a standalone style, but can also be used in other architectural
styles, such as the event-based microservice architecture.

2.2 Microservices

Microservices are an architectural concept for the realization of an application. In contrast
to monolithic applications, the functions are decoupled from one another and distributed
across different applications. Due to the loose coupling, changes to a microservice have
no direct impact on other services and cannot lead to the failure of the entire applica-
tion (Hat, 2018). Microservice architecture is a mixture of request-based and event-based
architecture.

An important feature of the microservice architecture is that the entire application does
not need to be shut down for updates and maintenance. Due to the scalability of individual
services, updates can be carried out by only partially replacing the running services. This
means that the application can be updated gradually without having to shut it down. The
resources used can also be dynamically adapted to the current workload by scaling the
individual services.

Teams can work independently and develop services using minimal communication.
Tests can also be limited to individual services instead of having to check the entire appli-
cation for functionality after a change.

Since the services are now no longer all in one place, a means of communication between
the individual microservices must be ensured.

2 Fundamentals 3

2.3 Communication

In an architecture with multiple services, these can communicate with each other in two
different ways, synchronously and asynchronously. While in synchronous communication
the sender and receiver are always active at the same time, in asynchronous communication
the connection is terminated after the request has been transmitted. To transmit the
corresponding response a new connection is opened (Kröner, 2022). This way there is no
need to wait for a response before the sender can continue. A good example of synchronous
communication from everyday life would be a meeting at work, since it takes place in real
time, or a phone call. For asynchronous communication, an email can be used as an
example because there is no need to respond directly to the email.

For communication between services, a message can be addressed to one or more re-
cipients. Either all recipients can be notified one after the other or an additional service
(e.g. broker or mediator) is used, which receives the message and distributes it to the
appropriate recipients or from which the individual recipients can obtain the information.

When designing an application, it is important to decide where to communicate syn-
chronously or asynchronously between services.

2.3.1 Communication vs. Protokoll

Synchronous protocols include, for example, HTTP/HTTPS. The client sends a request
and waits for a response from the service. This is independent of the execution of the
client code, which can be synchronous (thread is blocked) or asynchronous (thread is not
blocked, and the response reaches a callback at some point). The important thing here is
that the protocol (HTTP/HTTPS) is synchronous and the client code cannot continue its
task until it receives the response from the HTTP server (Microsoft, 2022).

Other protocols such as AMQP (a protocol supported by many operating systems and
cloud environments) use asynchronous messages. The client code, or the sender of the
message, typically does not wait for a response. It simply sends the message, as when
sending a message to a RabbitMQ queue or other message broker (Microsoft, 2022).

The choice of protocol used ultimately does not matter for data transmission. A syn-
chronous protocol like HTTP can be used for synchronous communication as well as for
asynchronous communication and vice versa.

2.3.2 Synchronous Communication

With synchronous communication, a connection remains active until a request has been
answered. After sending data, no further action can be taken within the application until
the response arrives. Accordingly, the running thread is blocked and does not respond
to further requests until the first operation that was triggered has been completed. So
that a server can nevertheless accept several requests, a separate thread is started for each
incoming request. This thread can then be blocked without effects on other inquiries and
running procedures up to the reaction of the communication partner. The advantage of
this is that each client has its own "contact person" who waits for its requests and reacts
to them as quickly as possible.

2 Fundamentals 4

2.3.3 Asynchronous Communication

In contrast to the synchronous approach, in asynchronous communication the client sends
its request to the application without the certainty of when and if it will be answered.
The connection is closed immediately after the request is transmitted. A new connection
is established for the respective response. Since it is not possible to wait for an immediate
response, asynchronous communication offers the option of using a queue. All requests are
stored there and retrieved by the receiver one after the other. With the help of vertical
(threads) or horizontal (replicas) scaling, parallel processing can be achieved. The ad-
vantages of asynchronous communication can be summarized in principle under the term
separation (To, 2022). Services, which do not need to know each other and thus work
anonymously in a certain way, are more strongly decoupled from each other. In addition,
the strong decoupling makes horizontal scaling easier than with synchronous communica-
tion.

There are several different styles of asynchronous communication:

• Request/response - a service sends a request message to a recipient and expects to
receive a reply message promptly

• Notifications - a sender sends a message a recipient but does not expect a reply. Nor
is one sent.

• Request/asynchronous response - a service sends a request message to a recipient
and expects to receive a reply message eventually

• Publish/subscribe - a service publishes a message to zero or more recipients

• Publish/asynchronous response - a service publishes a request to one or recipients,
some of whom send back a reply

Richardson, 2021

3 Investigation using the example of an eCommerce application 5

3 Investigation using the example of an eCommerce applica-
tion

In this chapter, important architectural characteristics of an eCommerce application are
identified and then examined in more detail.

3.1 Domain description

This domain contains domain objects for the realization of a simplified eCommerce ap-
plication in the form of a proof of concept (PoC). In domain-driven design, aggregates
are formed for a specific domain. An aggregate is a group of domain objects that can be
treated as a single entity. Figure 1 shows the UML class diagram consisting of four ag-
gregates. Each of these aggregates represents exactly one microservice in the microservice
architecture. An aggregate can contain one or more classes, of which exactly one is always
defined as the aggregate root. The aggregate root is always the location from which a
microservice can be accessed externally.

Figure 1 ECommerce Domain

The Customer aggregate (1) contains customers, shopping baskets and shopping basket
items (classes: Customer, Shopping Basket, Shopping Basket Item). A shopping basket
item contains information about the respective quantity and the corresponding total price.
A customer contains as information the name as well as the city. Each customer has exactly
one shopping basket and each shopping basket is assigned to exactly one customer. While
a shopping cart can contain any number of items, each item is in exactly one shopping
cart.

The Offering aggregate consists of offerings (Offering) and products (Products). A product
contains its respective color as well as the product description. An offer consists of the

3 Investigation using the example of an eCommerce application 6

quantity of a respective product as well as the resulting total price, a date and the status
it is currently in. An offer always refers to exactly one product. On the other hand, a
product can also appear in different offers.

The order aggregate contains only the orders (class Order). An order can be placed on a
specific date. In addition, it has a status such as "Paid".

The payment aggregate also consists of exactly one class, the Payment class. A payment
is processed on a specific time (date).

An item of a shopping cart always refers to exactly one offer. An order always contains
at least one item of a shopping cart while an item is either contained in an order or not.
Furthermore, an order is always assigned to exactly one customer, while a customer can
place any number of orders. Each order is either paid or not and a payment is always
assigned to exactly one order.

In Figure 2, the available business events are shown as use cases in a diagram.

Figure 2 Use Case Diagram

The customer and the shop owner are actors in the application. In the eCommerce
application, the customer should be provided with the function of adding and removing
items from his shopping cart. In addition, the customer should be able to purchase items
in the form of an order, which can then be paid for. There the customer has the possibility
to pay directly online or by invoice.

The right side of the use case diagram shows the business events of the shop owner. He
should be able to create, delete or edit products. He should also be able to create offers
from the products. An additional function that should be provided for the shop owner is
the ability to view the status of a customer’s orders.

3.2 Derive architectural properties from domain-specific requirements

To make meaningful decisions, domain-specific goals and needs must be translated into
architectural properties. In the following section, the domain at hand is examined for

3 Investigation using the example of an eCommerce application 7

these properties. Ultimately, the most important factor in an eCommerce application is
the user experience (UX). However, in today’s fast-paced environment, it is difficult to
achieve a good UX. The architectural properties studied for this use case ultimately lead
to an improvement in UX (Vogels, 2006, FX, 2022, Zenith, 2020).

A good UX in eCommerce is created especially by the successful completion of a purchase
process. The final screen „Thank you for shopping“ creates a sense of accomplishment
for the user. Since errors in a communication channel are fundamentally not completely
avoidable, a procedure must be in place to deal with errors. If an error occurs, the user
must be informed immediately. As soon as the user can no longer be sure that the process
has really been completed successfully (for example, if he receives an email message about
an error after the fact), this feeling is lost. Once a user has had the experience that the
process has not really been completed in reality, he is conditioned not to expect this the
next time. In this way, the inhibition threshold to order something is greatly increased.

Due to the wide range of eCommerce applications, small inconveniences can have a
direct effect on the profitability of an eCommerce application. If the application is not
available or an error occurs during a transaction, as a result of which a customer has to
wait or perform other additional actions, in most cases the customer has the option to fall
back on another eCommerce application. Accordingly, performance in terms of response
time and availability is an important characteristic for an eCommerce application.

In a software application, errors of any kind should be avoided as far as possible.
Especially in eCommerce, there are always users who have a special interest in exploiting
errors that occur to their advantage. Good testability is therefore an important feature. To
ensure the successful outcome or termination of a transaction, it is necessary, for example,
to check whether either the monetary consideration has been paid or the product is back in
the system in order to rule out any negative effects on the company. Testability therefore
goes beyond testing the actual functionality.

Nowadays, software solutions are getting bigger and bigger, including eCommerce
stores. Especially in an eCommerce application, maintainability plays a very important
role, as the application must be easily modifiable to fix errors or adjust attributes. In this
way, it is possible to react quickly to problems, which usually have an immediate economic
impact.

Users of an eCommerce application perform payment transactions, among other things.
Any error at this point leads directly to real consequences in the form of money loss. This
makes the issue of data loss an important feature of an eCommerce application.

A modern corporate structure is often based on the principle of expandability in order
to offer live service products. Accordingly, it is very important nowadays to be able to
follow current trends and developments in order not to be left behind by the competition.
It is also often the case with companies that when you grow, the resources gained should
be reinvested in the company. In this case, it is a great disadvantage if the application is
difficult to expand and thus the growth of the company would be held back.

The requirements for an eCommerce application are very dynamic, so it should always
have good scalability. For example, during the Christmas season, significantly more orders

3 Investigation using the example of an eCommerce application 8

are placed, while shortly after the Christmas season a high number of complaints arise, so
it is advantageous to be able to dynamically adapt the number of replications of services
to the requirements.

In many cases, a user’s actions trigger processes in the background that the user should
not have to wait for. For example, when a user adds an item to the shopping cart, he or
she should not have to wait for an archiving process to be completed. Good responsiveness
is therefore also a feature of the eCommerce application that needs to be investigated.

In case of a change of data, all corresponding modules must be informed about this
change in order to keep the data consistent. Otherwise, for example, an incorrect stock of
goods would be displayed or, after a change of address by the customer, the goods might
be delivered to an incorrect address when an order is placed.

If an error occurs in a service, it is important that the entire application does not block
or collapse (with reference to statements such as those made by Werner Vogels, see section
1). Accordingly, the resilience of the application is an important property of an eCommerce
application.

In addition to the technical features, the pure business aspect also plays a role. Tech-
nologies used always require a corresponding competence, which means that someone must
be paid to implement functionalities. The competencies required and the time needed to
implement a functionality depend on the technology used.

In summary, the following properties of the application are now to be examined:

• Error Handling

• Performance

• Availability

• Testability

• Maintainability

• Data Loss

• Extensibility

• Scalability

• Responsiveness

• Consistency

• Resilience

• Business Aspect

3 Investigation using the example of an eCommerce application 9

3.3 Tradeoff ASYNC

In the following, the tradeoff of asynchronous communication is examined based on the
identified properties.

3.3.1 Error handling

„The main problem with asynchronous communication is error handling“ (Richards, 2020,
p.201). When a sender sends a message asynchronously, it only receives a response that its
message has arrived, a kind of promise that its request will be processed. After that, the
communication channel to the client is closed, in contrast to synchronous communication.
If further information has to be exchanged due to an error or similar, another communica-
tion channel has to be opened. However, if a problem arises with his request, he himself is
initially unaware of it and must be informed via an external mechanism. With time-critical
procedures this can be perceived thus as a disadvantage of asynchronous communication
(Richards, 2020, p. 200).

3.3.2 Performance

In places where an operation must be performed as quickly as possible, synchronous trans-
mission of the request is generally safer because the response is immediate. As already
described in section 3.3.1, with asynchronous communication there can initially only be a
promise that the request will be processed. However, in terms of overall processing time
or performance, there is basically no significant advantage or disadvantage between syn-
chronous and asynchronous communication as long as the number of threads is the same.
While synchronous starts a thread for each request, which remains blocked until the answer
is generated and sent, with asynchronous transmission all requests arrive in a queue and
threads are generated internally in the program, which take these for processing. Since
thereby the tasks do not change it has no substantial influence on the performance (illus-
trated in section 3.3.8 figure 3) (Richards, 2020, p. 200ff). This was confirmed e.g. also
by Mikulich, 2021 in several experiments.

However, with asynchronous transfer there is an additional intermediate element (queue).
This only has to lead to a transfer time (processing time) and thus to a deterioration in
performance, albeit minimal, due to the operations added as a result with the same number
of threads. In complex microservice applications, however, these minimal effects can add
up and create noticeable impacts.

However, an event-based architecture can achieve high performance due to a combina-
tion of asynchronous messaging and highly parallel processing (Richards, 2020, p. 213).
Consequently, performance may ultimately be perceived as an advantage of asynchronous
communication, provided it is an event-based architecture.

3 Investigation using the example of an eCommerce application 10

3.3.3 Availability

A significant difference between synchronous and asynchronous communication arises at
the point where the capacity limit of a service is reached. If no further thread can be started
in the synchronous model, no more requests can be accepted. The caller and the called are
connascent, that means the number of services, which receive data must at least correspond
to the number of services, which send data (Richards, 2020, p.95). Asynchronous services
are not connascent due to the use of queues, requests end up in a queue to be picked up
later.

3.3.4 Testability/Maintainability

There is a significant difference in testability between synchronous (request-based model)
and asynchronous (event-based model) communication. While deterministic processes are
quite easy to test in the request-based model because the paths and results are known, the
testability of non-deterministic processes and dynamic events is considerably more complex
in the event-based model because it is sometimes not clear how services react to dynamic
events and which messages are generated in the process. These "event tree diagrams"
can turn out to be very complex and generate thousands of different scenarios, which are
difficult to monitor and test (Richards, 2020, p.213).

3.3.5 Data loss

In asynchronous communication, data can be lost at various points. These places are
typically:

• Path from an event processor to the queue, or the broker fails before the message
reaches the next event processor.

• An event processor crashes after loading the message from the queue - but before
processing it.

• Error with database connection

[Richards, 2020 p.205 Prevent data loss]
Data loss can therefore be perceived as one of the problems/disadvantages of asyn-

chronous communication. With synchronous communication, there is always a direct wait
for a response and it would be immediately noticeable if the data does not arrive. There
are concepts to counteract the problem of data loss in asynchronous communication such
as the workflow event pattern (described in Richards, 2020 p.202), but these are always
accompanied by a performance penalty.

3.3.6 Extensibility

In an event-based architecture (asynchronous), if a new service or function is implemented
in an existing service that requires a specific piece of information that already exists, it
can simply be subscribed to the corresponding topic. With synchronous communication,

3 Investigation using the example of an eCommerce application 11

extending a new functionality is more difficult because synchronously communicating ser-
vices must have information about the receiver or sender of the current data. Thus, all
services that interact with the new service or function must first be informed about it.
Accordingly, extensibility is an advantage of asynchronous (event-based) communication.

3.3.7 Scalability

Due to the connascence described in section 3.3.1, synchronously communicating services
can only be scaled in dependence on each other, i.e., they can be scaled meaningfully only
in a certain relationship to each other. In contrast, asynchronously communicating services
can be scaled independently by using a queue or an event-based broker.

3.3.8 Responsiveness

In synchronous communication, a connection is established from the sender to the receiver
and a request is sent. The connection remains open until the corresponding response has
been sent. The sender must therefore wait until the receiver has performed all the necessary
steps to be able to respond. In the asynchronous model, on the other hand, the connection
is closed as soon as the sender has transmitted his request. Thus, it is only active for the
duration of the transmission and there is no additional active waiting time. Figure 3 shows
a comparison using an event-based architecture as an example. Accordingly, responsiveness
can be perceived as a strong advantage of asynchronous communication. (Richards, 2020,
p.200)

Figure 3 Responsiveness between two services with a async communication (Richards, 2020, p.
201)

3.3.9 Consistency

Since, as described in the sections 3.3.1 and 3.3.5, error handling and data loss can be
a problem with asynchronous communication, this also endangers the consistency of the
data. Precautions and control mechanisms must exist, which lead to eventual consistency
and in turn cost computing power. Since with synchronous processing the data is kept
directly consistent, this is to be noted as an advantage of synchronous communication.

3 Investigation using the example of an eCommerce application 12

3.3.10 Resilience

Because the sender and receiver must always be known in synchronous communication,
all other communication partners must be informed if one of these services fails. At a
certain level of complexity, this is difficult to implement and not particularly practical.
If there is a communication chain in which several services are involved, synchronous
communication also runs the risk of this chain being completely blocked in the event of a
failure. Asynchronous communication therefore significantly increases resilience.

3.3.11 Business aspect

For asynchronous communication, additional competencies are needed in the team. Espe-
cially for an event-based architecture with e.g. Kafka, someone must be involved who is
familiar with this technology. The implementation is also more time-consuming than the
realization e.g. with a synchronously working REST interface.

4 Decisions 13

4 Decisions

In the following, decisions regarding the communication between the services of the eCom-
merce application as well as with clients are made and justified on the basis of the available
business events. The different communication channels are shown in Figure 4.

Figure 4 Microservice Architecture

For a decision, the following circumstances or guiding questions are considered in addition
to the tradeoffs identified:

• frequency of operation

• duration of the operation

• Importance of the order of operations

• Are other services in a communication chain blocked?

• Does a service need a direct response to continue?

• Are there multiple receivers for the sender?

In cases of asynchronous communication, an event-based architecture with a broker is
used. For synchronous communication between clients and services, REST interfaces are
used.

4.1 Shop owner adds, updates or removes product or offering

In this case, there is communication between the client and Offering. Since this process
occurs comparatively infrequently and there is no other chain of communication, neither
responsiveness nor performance is particularly important. Asychronous communication
does not provide any advantages at this point. The synchronous approach is therefore
chosen here, which is easier to implement, test and maintain. Synchronous communication
also makes it easier to guarantee data consistency.

4 Decisions 14

4.2 Customer adds or removes item to/from shopping basket

Here there is a communication between client and offering, and between offering and cus-
tomer. First, the Offerings have to be displayed in the frontend of the client. To do this,
the information from Offering is transferred to the client. If the client receives a request
from Offering to add a particular item to the shopping cart, Offering communicates with
Customer to fill the shopping cart corresponding to the customer. This process is very
common as many customers are viewing offers and processing their shopping cart at the
same time. Good responsiveness and performance are important so that items can always
be quickly displayed to the customer. In addition, scalability is very important at this
point, as requirements vary greatly depending on the season. So everything speaks for
asychronous communication between Offering and Customer at this point. The commu-
nication of the client with Offering still remains synchronous.

4.3 Customer places order

For this event, there is communication between the client and Customer, and between
Customer and Order. In this business event, the client communicates primarily with the
customer service. The customer is in his shopping cart and now wants to place the order.
To do this, a request is sent to the Order Service. The order contains the items specified by
the client. This process is performed frequently and by many clients, so it is advantageous
to ensure a good response time as well as performance. Furthermore, a good availability as
well as scalability is important, since the requests are seasonally dependent and fluctuate
strongly, similar to the use case „Customer adds or removes item to/from shopping basket“.
For the reasons described above, asynchronous communication is chosen and the tradeoff
for testability and maintainability is accepted in this case.

4.4 Customer pays order

The payment transaction takes place between the client and Payment. The client selects
its payment transaction and contacts the Payment service through it, which confirms the
transaction and forwards this to Order to complete the order. Both of these communication
channels are synchronous, due to the high relevance of this process and possible direct
monetary damages in case of data loss. In addition, the customer gets direct feedback on
whether the process was completed successfully. Since this process cannot be divided into
smaller subprocesses, a high degree of parallelization does not bring any great advantage
in this case.

4.5 Customer does not pay order

The Order service has a mechanism which periodically checks for an order whether a
payment is present or not. To do this, Order must communicate with Payment. In this
case, data loss is not a major concern, as the process is repeated periodically, so if the data
has not arrived before, it can be fetched on the next attempt. Also, this process is highly
parallelizable since it involves many small requests that do not necessarily have to happen

4 Decisions 15

in a specific order. For the reasons described above, asynchronous communication is used
at this point.

4.6 Shop owner checks order status

The business event describes a manual status check of a particular order. In this case, there
is communication only between the client and Order. The decision at this point behaves
like „Shop owner adds, updates or removes product or offering“ and therefore synchronous
communication is chosen for this event.

4.7 Decision Tree

With the information gained, this section attempts to develop an initial concept for a
decision tree. Possibly, after further development, this could lead to a way to support the
decision process between synchronous and asynchronous communication. The figures 5
and 6 show two possible decision trees or respectivly two parts of a single decision tree.

Figure 5 Decision Tree Guiding Questions

Figure 6 Decision Tree Properties

4 Decisions 16

4.8 Preparing the Coding Exercise

With the information gained and decisions made, a coding experiment is now started,
which is described in this chapter and in which the present eCommerce application is re-
alized in a first version.

It was decided to implement the project with .NET Core (C#). For clients, a frontend with
Angular is provided. For the asynchronous communication channels, Kafka is used as bro-
ker. The microservice architecture is containerized locally with Docker for simplification.
Figure 8 shows the architecture considering the previous decisions.

Figure 7 Microservice Architecture with broker

5 Coding Exercise and Evaluation 17

5 Coding Exercise and Evaluation

Now that the research is complete, the practical part of the module is tackled. For this
purpose, the corresponding IDEs were installed and configured for the technologies to be
used (see chapter 4.8).

During the development it turned out that it makes sense to adapt the planned archi-
tecture in certain points. A direct REST connection of the client to all services does not
go along with the planned use of the event broker. Therefore, the architecture is modified
in that the customer client communicates exclusively with the customer service. The cus-
tomer service thus acts as a kind of API gateway and in turn communicates with the other
services via the event broker.

Figure 8 Microservice Architecture with broker

To evaluate the project, the following points are considered:

• To investigate the extensibility of the application, an additional event-based service
is added.

• To evaluate the resilience of the application, a series of tests are performed in which
targeted individual services are shut down to simulate a failure and determine the
impact on the application’s ability to run.

• To determine the effort, a developer diary is kept during the project, which contains
tasks, times, lines of code and problem descriptions.

5 Coding Exercise and Evaluation 18

5.1 Extensibility

5.1.1 Adding an additional service: Order archiving

The event-based order archiving service is used to archive a history of all orders placed by
the customer service. It listens for the Kafka channel where new orders are announced and
adds the corresponding customer number and order date to a list for each order placed.

5.2 Resilience-Tests

5.2.1 1. Test: Order archiving service fails

In the event of a failure of the archiving service, the order will not be archived, but the
order itself can be successfully executed regardless. The failure has no effect on the rest
of the application. The order data is available in the corresponding Kafka channel and
will be retrieved as soon as the archiving service is running again. Orders placed in the
meantime are archived retrospectively.

If the communication between the customer service and the order archiving service
were synchronous, an error would occur during the creation of an order in the customer
service and the order process could not be completed successfully, even though the order
itself had already been created.

5.2.2 2. Test: Order service fails

If the order service fails, customers can continue to place orders. The order data is stored
by the customer service in the Kafka channel "order data" and retrieved by the order
service as soon as it is up and running again. Only then is the order created. In the
meantime, the customer service can continue to work normally. The order placed by the
customer is already archived even though, strictly speaking, it does not yet exist. If a
payment is created during the outage, the order service will receive the data from Kafka
when it is operational again and will update the order status. If an order is created and
paid during the outage, there is a risk of a race condition. It must be ensured that the
order service first checks orders placed before processing payments.

If there was synchronous communication between the customer service and the order
service, no order could be placed by the customer during the outage. The customer service
would report an error when trying to place the order and the customer service would be
blocked.

5.2.3 3. Test: Payment service fails

Since this is a synchronous communication between client and payment service, no pay-
ments can be made in case of a failure. Otherwise, there is no further impact on the
application.

5 Coding Exercise and Evaluation 19

5.2.4 4. Test: Offering service fails

For the shop owner functions (create/remove products and offerings), there is synchronous
communication between the client and the offering service. The shop owner functions can
therefore not be executed in the event of a failure of the offering service. Furthermore,
the customer service can no longer call up the offerings, which means that a customer
has no way of displaying the offerings or adding them to his shopping cart. Since the
communication between the customer service and the offering service is request/reply-based
via Kafka, the customer service’s request is stored in the corresponding Kafka channel.
However, the response in the form of the required Offerings will not be sent until the
Offering service is running again. So it does not cause an error in the customer service
but the Offerings will not be displayed during the outage of the Offering service. If the
Customer Service has already requested and received the Offerings before the outage, it
will have its own Offering list. This (not current) list would be able to be displayed to the
client in this case. This creates the risk that a client will see or add to the shopping cart
an Offering that may no longer exist.

In an event-based model, the offering data could be stored redundantly in the customer
service. When a new offering is created, the information would be stored in a corresponding
Kafka channel. From there, the customer service could take all the required information of
the created offering and maintain its own reduced database of offerings ("Better have data
than need data"). In this model, the customer service would be independent and could
continue to work even in the event of a failure of the offering service. However, with a
large assortment, i.e., a large volume of Offerings data (e.g., Amazon), this would mean a
very large redundant volume of data.

5.2.5 5. Test: Customer service fails

Since the customer communicates directly with the customer service as a client, he cannot
access the application in the event of a failure. The customer service serves as an API
gateway, so to speak. The only function that remains available is "pay order", as this is
implemented by a separate REST call to the payment service. The shop owner functions
are also still available and are not affected.

The direct communication of the client with the application should be synchronous,
since the customer must receive a direct response. Therefore, asynchronous or event-based
communication is not useful at this point.

5.2.6 6. Test: Kafka fails

Only the shop owner functions are still available, as they are the only ones that do not
involve communication via Kafka. All other functionality of the application fails. If Kafka
is already down when the services are started, errors occur directly because the Kafka
Topics are not accessible.

5 Coding Exercise and Evaluation 20

5.2.7 Resilience Tests Conclusion

In figure 9 the results of the resilience tests are summarized in tabular form.

Figure 9 The figure shows the runnability of the individual functions in relation to crashed ser-
vices, where the x-axis contains the service that crashed and the y-axis describes the behavior of
the functions. Runs means, the function continues to run without degradation, Error means, the
function is no longer available. Delayed means, the function can be executed, but the processing
of the data happens only as soon as the corresponding service is running again.

5 Coding Exercise and Evaluation 21

5.3 Effort

This section deals with the process of the coding exercise, problems encountered during
the execution as well as the time spent and the amount of code generated for each element.
During the course of the exercise, a detailed developer diary was kept, written in german
language, in which the individual steps and considerations were recorded (see Appendix
A.1).

Initially, a simple test project was created with 2 services communicating using Kafka (1
producer + 1 consumer, 1 Kafka topic). Initially, several problems arose with the use of
Kafka, especially when trying to configure a service to be both a consumer and a producer
of events. The solution to this problem in this case was to use threads.

At the beginning of the project, various approaches were attempted to implement
the microservice architecture in conjunction with a message broker. These included two
different Kafka variants (Docker images), various approaches in .NET, and an approach in
Python.

The implementation of the Phython application was initially faster and easier to realize
because it is a very easy-to-use scripting language. In terms of modularity as well as file
structure and file management, .NET delivered clear advantages thanks to its dedicated
development environment with corresponding features. With .NET Core, however, a suit-
able version first had to be agreed upon and the IDE of the other team members had to be
adapted accordingly. This led to various version and package conflicts in the first steps. In
.NET Core, IDE-related variables or connection strings for databases are swapped out in a
so-called appsettings.cs. This mechanism formed an additional advantage to work together
on the project from different machines.

One problem with using Kafka was monitoring. While one of the variants of Kafka used
included many additional features, including its own Control Center, this same multitude
of functionality created additional overhead and problems with error-free use. The other
Kafka variant, on the other hand, was very lean and easy to run in comparison, but did
not provide an accompanying way to monitor the various topics. The solution was a self-
made Python script, which subscribes to all available topics and outputs the content to
the console.

The plan was to use Angular to create a frontend to execute the various business events in
the form of functions and visualize the results. This involved familiarization with the cor-
responding framework, which turned out to be time-consuming and effort-intensive. The
creation of the frontend was therefore ultimately discontinued in order not to exceed the
time scope of the project.

While comparatively little code was produced at the beginning of the project or discarded
at the end, it was possible to develop more and more efficiently from step to step as the
project progressed. While typical REST calls could be implemented easily and without
problems from the beginning, the development of a service that communicates via Kafka
was much more difficult at the beginning. As soon as the principle of producer and con-
sumer was understood and functionally implemented, the creation of further services and

5 Coding Exercise and Evaluation 22

functionalities became much easier.

The exact descriptions and timings as well as lines of code for the individual work steps
are listed in the developer diary (see Appendix A.1). A summary of some essential work
steps can be found in the following table:

Task Time in Mins Lines of code
Testproject 107 80

First .NET App (customer, offering) 1078 233
Python Application (client, customer, offerings, monitor) 407 269

.NET order-service 52 89
create/delete product/offering 40 53

Payment-service incl. event processing 33 36
Order-archive-service incl. test 28 61

Split project into individual projects 60 -

The following tables show the final scope of the project based on the included files, as
well as the breakdown of the time spent on coding, research and testing:

File Lines of code
Product class 10
Payment class 5
Order class 8

Offering class 10
Customer class 9

Customer service 87
Offering service 110

Order archive service 61
Order service 120

Payment service 36
Customer controller 120

Order controller 32
Payment controller 32
Product controller 53

Program.cs 30
Total 723

Table 1 Final project size in lines of code

Framework Time
.NET 28.8 h

Python 6.7 h
Angular 5.5 h
Total 41 h

Table 2 Pure coding times

Task Time
Coding 41 h

Research 5.5 h
Test 2.05 h
Total 48.55 h

Table 3 Workload

With the data obtained, the average productivity is 14.8 lines of code per hour, resulting
in approximately 118 lines per 8-hour workday. On average, a programmer produces 10-50
lines in 8 hours. It can therefore be seen that, as soon as a functioning infrastructure is in
place, above-average productivity can be achieved.

5 Coding Exercise and Evaluation 23

5.4 Evaluation Conclusion

During the resilience tests, in which individual services were shut down, it became apparent
that if a service operates exclusively event-based, the impact on the rest of the application
resulting from a failure can be minimized or completely prevented.

Due to the given event-based part of the infrastructure, additional event-based services
can be implemented with comparatively little effort.

By using asynchronous communication with the help of a message broker, functions that
would block or crash if a service fails can be processed retrospectively at the moment when
the corresponding service is operational again. However, it also means that if the broker
itself crashes, there is an impact on all services that need it to communicate.

One measure against the effects of service failures is to scale them. In addition, this pro-
vides protection against failures due to excessive load.

While productivity was comparatively low at the beginning, it increased steadily once the
infrastructure was in place.

A particular problem in the implementation of an event-based architecture is the paradigm
shift from a synchronous thought model (Request/Reply) to an event-based way of think-
ing. Communication can be implemented asynchronously and still be message-based with
the request/reply pattern. It turned out to be remarkably difficult to change over mentally.

6 Conclusion 24

6 Conclusion

This work has confirmed that a decision on whether a service should communicate syn-
chronously or asynchronously is not always easy or clear-cut. There will always be a
trade-off. The most important thing is to know the requirements and limitations of its
domain and incorporate these into the design decisions of the application.

Indeed, asynchronous communication offers significantly better resilience, scalability and
responsiveness. Nevertheless, there may always be places where asynchronous communi-
cation cannot exploit its advantages. For example, if no communication chain exists, none
can be blocked, or if a process only happens very rarely, scalability is not necessary. Since
clients from the outside should never have to wait until related processes are completed in
the background, synchronous communication is the best option at these points.

This work should help to see these requirements more clearly and to be able to make the
decisions more easily. A useful extension of this work would be to develop two eCommerce
applications. One of these applications would be developed completely with asynchronous
methods and the other one completely with synchronous methods. This would allow a
direct comparison of each communication channel, confirming or disproving the claims of
this thesis through measurements.

So what is the answer to Mr. Vogels Question?
There are places where communication should be synchronous because an immediate

response is needed and it only makes sense to deliver that response immediately. Outside
of this, we agree with Mr. Vogels. We would even go further and say make it event based if
possible. But do it where it makes sense and where you are willing to make the tradeoff. In
the example of the present project, this was well illustrated by the handling of the offerings
with the tradeoff of data redundancy.

7 Outlook 25

7 Outlook

In a second version of the application, the client would not communicate directly with
the respective service via REST, but via an API gateway that forwards the requests to
the respective services. An asynchronous request/reply pattern is avoided; instead, the
message broker is used exclusively for event-based communication. Each service has its
own database and data redundancies are accepted. All communication channels where an
immediate response is required are implemented synchronously with REST calls. Addi-
tionally the implementation of the planned frontend for the eCommerce application could
be resumed.

Figure 10 shows an architecture in which this could be implemented:

Figure 10 Future microservice architecture

References 26

References

FX, W. (2022). Why does ux matter for ecommerce? Retrieved November 25, 2022, from
https : //www.webfx . com/web - design/ecommerce/why - does - ux - matter - for -
ecommerce/#:~:text=UX%20is%20critical%20to%20ecommerce,offers%20the%
20best%20UX%20possible.

Hat, R. (2018). Was sind microservices? Retrieved November 10, 2022, from https://www.
redhat.com/de/topics/microservices/what-are-microservices

Kröner, K. (2022). Was unterscheidet asynchrone und synchrone kommunikation? Re-
trieved November 25, 2022, from https://www.repetico.de/card-34295922

Microsoft. (2022). Communication in a microservice architecture. Retrieved November 25,
2022, from https://learn.microsoft.com/en-us/dotnet/architecture/microservices/
architect - microservice - container - applications/ communication - in - microservice -
architecture

Mikulich, A. (2021). Async vs sync benchmark (.net). Retrieved November 20, 2022, from
https://artemmikulich.medium.com/async-vs-sync-benchmark-net-f1e752a57755

Richards, M. (2020). Handbuch moderner softwarearchitektur - architekturstile, patterns
und best practices. John Goerzen, Brandon Rhodes. https://doi.org/10.1007/978-
1-4302-3004-5

Richardson, C. (2021). Pattern: Messaging. Retrieved November 24, 2022, from https :
//microservices.io/patterns/communication-style/messaging.html

To, J. Y. (2022). Microservices architecture: Asynchronous communication is better. https:
//www.sysaid.com/blog/sysaid-tech/microservices-architecture-asynchronouscommunication-
better

Vogels, W. (2006). A conversation with werner vogels. Retrieved November 25, 2022, from
https://queue.acm.org/detail.cfm?id=1142065

Vogels, W. (2022). Werner vogels. Retrieved November 25, 2022, from https://en.wikipedia.
org/wiki/Werner_Vogels

Zenith, V. (2020). Importance of ui/ux for e-commerce. Retrieved November 25, 2022, from
https://www.linkedin.com/pulse/importance-uiux-e-commerce-viswam-zenith

https://www.webfx.com/web-design/ecommerce/why-does-ux-matter-for-ecommerce/#:~:text=UX%20is%20critical%20to%20ecommerce,offers%20the%20best%20UX%20possible.
https://www.webfx.com/web-design/ecommerce/why-does-ux-matter-for-ecommerce/#:~:text=UX%20is%20critical%20to%20ecommerce,offers%20the%20best%20UX%20possible.
https://www.webfx.com/web-design/ecommerce/why-does-ux-matter-for-ecommerce/#:~:text=UX%20is%20critical%20to%20ecommerce,offers%20the%20best%20UX%20possible.
https://www.redhat.com/de/topics/microservices/what-are-microservices
https://www.redhat.com/de/topics/microservices/what-are-microservices
https://www.repetico.de/card-34295922
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://artemmikulich.medium.com/async-vs-sync-benchmark-net-f1e752a57755
https://doi.org/10.1007/978-1-4302-3004-5
https://doi.org/10.1007/978-1-4302-3004-5
https://microservices.io/patterns/communication-style/messaging.html
https://microservices.io/patterns/communication-style/messaging.html
https://www.sysaid.com/blog/sysaid-tech/microservices-architecture-asynchronouscommunication-better
https://www.sysaid.com/blog/sysaid-tech/microservices-architecture-asynchronouscommunication-better
https://www.sysaid.com/blog/sysaid-tech/microservices-architecture-asynchronouscommunication-better
https://queue.acm.org/detail.cfm?id=1142065
https://en.wikipedia.org/wiki/Werner_Vogels
https://en.wikipedia.org/wiki/Werner_Vogels
https://www.linkedin.com/pulse/importance-uiux-e-commerce-viswam-zenith

Appendix 27

Appendix

Appendix Material

.1 Developer Diary (devlogs)

ENTWICKLERTAGEBUCH

==================

11.12.22 - 11:00 Uhr - Kafka Testprojekt

Testprojekt: 2 services kommunizieren über Kafka:

.NET 6

docker-compose

1 producer

1 consumer

confluent kafka

message sending test mit swagger

1.Test - Nachrichten mit swagger produzieren während beide services laufen:

1 nachricht kam durch, danach nichts mehr

services neugestartet

keine Besserung -> rechner komplett neustarten

1. nachricht kommt durch - danach nichts

swagger gibt 201 (created) zurück

docker container laufen (zookeeper + kafka)

nach docker neustart kamen die alten Nachrichten plötzlich an, neue testnachricht

kommt wieder nicht an -> namespace bei consumer hinzugefügt, neustart von visual

studio (consumer) scheint zu funktionieren, 3 Nachrichten hintereinander kommen an,

kurzer idle,

3 weitere Nachrichten kommen an [snip01] lag es am namespace?

2.Test - Consumer abschalten, 3 Nachrichten senden, consumer wieder hochfahren:

Erfolg, einige Sekunden nach dem Start erreichen die Nachrichten den Consumer

(14:41 Uhr)

11.12.22 - 12:47 Uhr - insgesamt ~80 Zeilen Code

1 producer, 1 consumer, kafka, docker-compose

Appendix 28

12.12.22 - 18:02 Uhr - Modellierung des Domain Message Flow Diagramms

-> Funktion zum Anzeigen aller Products/Offerings für ShopOwner?

-> Funktion zum Anzeigen der Offerings für Customer?

-> Was passiert wenn Payment beim Check kein payment date liefert?

(Kunde hat nicht bezahlt)

-> Shop owner checkt nur direkt über order id oder auch anhand eines customers?

(19:15 Uhr)

13.12.22 - 14:11 Uhr - Test 1+2 wiederholen: nur 1. msg kommt durch

offering neustarten - alle nachrichten kommen durch

Service: Offering -> Klassen: Offering (id, name, quantity, totalPrice, effectiveDate,

status, product) + Product (id, name, color, description, price) anlegen

-> entweder nur price bei offering oder totalPrice und dann price bei product

Daten mocken, 2 products, 2 offering

(15:30 Uhr)

14.12.22 - 17:00 Uhr - Git Repo erstellen

14.12.22 - 17:00 Uhr - frontend mit angular aufsetzen (18:20 Uhr)

15.12.22 - 10:20 Uhr - angular components für frontend erstellen

15.12.22 - 11:20 Uhr - klassen anpassen (preis für product), refactoring

15.12.22 - 11:50 Uhr - GET Test-Message

Client -> Customer -> Kafka -> Offerings (erstellt message)

Offerings -> Kafka -> Customer -> Client

Customer+Offering sind gleichzeitig Producer und Consumer des selben Topics

Controller zum Senden, Handler zum empfangen

15.12.22 - 13:07 Uhr - GET offerings

Client -> Customer -> Kafka -> Offerings -> Kafka -> Customer -> Client

Kafka topic: offerings_ch

Appendix 29

PROBLEM: simple_topic funktioniert, offerings_ch nicht, Fehlersuche

console logs, break-points

topics in der compose-file ändern

namen und namespaces prüfen

Leerzeichen in CREATE_TOPICS, reihenfolge ändern

kafka konsole meldet topics created, aber keine messages, wie monitoring?

Service CustomerConsumerHandler in Program.cs definiert

alle services neustarten

Reihenfolge der ConsumerHandler ändern

builder service für ConsumerHandler ändern von Singleton auf AddScope

topics tauschen, dann funktoiniert offerings_ch aber simple_topic nicht mehr

topics in verschiedenen variablen anlegen und auf beide subscriben

AddScope auf AddTransient ändern

nach wie vor funktioniert immer nur 1 topic

wieder zurück auf Singleton

LÖSUNG: 1 ConsumerHandler, topics als Liste, beide topics funktionieren

(15:01 Uhr)

15.12.22 - 15:03 Uhr - 1 producer, 1 consumer, 2 topics - 115+10+10+90+40 = 265

Zeilen Code

15.12.22 - 15:06 Uhr - Ziel: 1 producer, 1 consumer, 2 topics (1x "Jemand will alle

Offerings", 1x "Alle Offerings")

Test: getMessage kommt rein, Test-Message geht raus an Kafka

getMessage kommt an, Test-Message geht raus, aber Test-Message kommt nicht

beim Customer an Customer kann bisher nur senden, beim Versuch den Handler-Service

zu implementieren startet swagger nicht mehr

Offerings: getOfferings kommt rein, liste von offerings geht raus an kafka

15.12.22 - 15:40 Uhr - Testprojekt mit Python

probleme mit netzwerkgeräten von virtualbox lösen (virtualbox

neuinstallation)

kafka image, dockerfile und compose yml von wurstmeister

confluent kafka - certify

test mit 1 producer + 1 consumer + kafka

test erfolgreich

15.12.22 - 16:48 Uhr - Dockerfile, composefile, 2 python scripts ->

4 dateien mit 10+38+20= 68 Zeilen Code

Appendix 30

15.12.22 - 16:51 Uhr - Customer+Offerings Kommunikation über Kafka

2 topics: offerings, offerings_data

Customer-Service sendet "customer needs offerings" an kafka(topic:

offerings),

Offering-Service consumed offerings-topic

Offering-Service sendet Liste mit Offerings (gemockt) an kafka(topic: offerings_data)

Customer-Service consumed offerings_data-topic

Customer-Service bekommt Liste von Offerings und gibt sie aus

dazu existiert 1 kafkaConsumer-Service welcher alle Topics subscribed

(monitoring)

PROBLEM: Anfrage kommt an, offering-liste erreicht den kafkaConsumer

aber nicht den Customer

LÖSUNG: mit producer.flush() sicherstellen dass daten raus gehen, funktioniert

(17:20 Uhr)

Aber ist die Lösung gut? Besser mit Threading?

Code Anpassen mit Threads

PROBLEM: offering-liste kommt nicht an

Kafka neustart, neue IP

ip von kafka selbst festlegen, im code anpassen

poll timeout entfernt

es dauert teilweise sehr lange (~30sek) bis nachrichten ankommen

kafka admin api research (um in kafka direkt reinschauen zu können)

problem bleibt bestehen: offering-liste erreicht den customer nicht

15.12.22 - 18:37 Uhr - Customer, Offerings, KafkaConsumer,

Composefile mit 51+10+37+52+20 = 170 Zeilen Code

16.12.22 - 10:11 Uhr - .NET-Projekt - offerings kommen nicht beim customer an

namespaces anpassen, refactoring

automatischer browser-launch auf false

namespaces entfernen

research: message-broker vs event-sourcing

partitionen, commits

16.12.22 - 11:50 Uhr - Angular Frontend, components (12:40 Uhr)

Appendix 31

17.12.22 - 12:00 Uhr - Angular Frontend, mock-data, offerings

Design, offerings (gemockt) werden gelistet, addToBasket-button (13:10 Uhr)

17.12.22 - 18:01 Uhr - Python Backend, async commits, message count

PROBLEM: offering-liste kommt bei monitoring an, aber nicht bei customer-service

einrückungen korrigiert

es dauert einige zeit (ca. 10sek), aber offering-liste kommt bei customer

service an

input für getOfferings im Customer-Service einbauen (nicht mehr

automatisch)

customer-service sendet "getOfferings" an kafka, monitoring und offering-

service bekommt Anfrage und sendet offering-liste an kafka, customer bekommt liste

LÖSUNG: kafka-gruppen angepasst, immer nur 1 aus einer Gruppe bekommt die

Nachricht

funktioniert (18:40 Uhr)

test wiederholen, alles neustarten -> funktioniert, keine verzögerung mehr

wichtig: warten bis kafka komplett initialisiert ist

github commit (18:47 Uhr)

17.12.22 - 18:56 Uhr - API Endpunkt mit Flask für customer-service

Test mit curl (getOfferings an customer-service) - funktioniert

return einbauen, offering-liste an client zurücksenden

Client (PythonClient.py) für http-request an die API

PROBLEM: Client bekommt leeres Paket

json nicht vor dem Senden an Client decoden

Problem mit event?

LÖSUNG: data variable global deklarieren

test wiederholen, funktioniert, sehr wenig delay

github commit (19:40 Uhr)

17.12.22 - 19:40 Uhr - 5 Dateien (compose, client, customer, offerings, monitoring)

mit insgesamt 20+15+76+57+43 = 211 Zeilen Code

18.12.22 - 19:20 Uhr - Listen: Offering (id, name, quantity, (totalPrice),

effectiveDate, status, product_id) + Product (id, name, color, description, price)

anlegen

Appendix 32

products[(1, "Pencil", "black", "Faber Castell Limited Edition HB", 4.95),

(2, "Toaster", "gray", "Miele Toaster Deluxe 600W", 49.90),(3, "Jacket", "red",

"Hally Hanson best Down", 109.99)]

offerings[(1, "Pencil (single)", 1, "18.12.2022", "in stock", 1),(2,

"Pencil (set)", 6, "18.12.2022", "in stock", 1),(3, "Toaster", 1, "18.12.2022", "not

available", 2),(4, "Jacket", 1, "18.12.2022", "in stock", 3)]

gemockte Daten werden in .txt-Dateien gespeichert

getOfferings auf das Auslesen der Datei anpassen

18.12.22 - 19:51 Uhr - put in shopping basket, architektonische Überlegungen

Customer-Client addToCart(offeringID, customerID) -> an Customer-Service -

> Customer-Service getOfferings() über Kafka (wie immer), Customer-Service schreibt

entsprechendes Offering anhand der Id in den ShoppingBasket des entsprechenden

Customers

besser: Customer-Service sendet getOfferingByID(id) und bekommt nur das

entsprechende Offering zurück

rename: getOfferings zu getAllOfferings (um Verwechslung zu vermeiden)

customers.txt enthält customer+shoppingBasket Daten

addToCart() schreibt offeringID in die entsprechende Zeile von

customers.txt

PROBLEM: offering wird nicht in Datei geschrieben, keine Fehlermeldung

prints einbauen für debugging

addToCart() findet customerID nicht

customerID als string lesen

LÖSUNG: jsonLine in anderer Variable speichern, Datei neu schreiben

kleiner \n fix

addToCart() funktioniert (21:04 Uhr)

pythonClient.py erweitern mit Menü für Funktionen (show/add/remove)

removeFromCart(itemID)

18.12.22 - 21:17 Uhr - Github commit, 5 Dateien (compose, client, customer,

offerings, monitoring) mit insgesamt 20+47+98+61+43 = 269 Zeilen Code

19.12.22 - 19:17 Uhr - customerclient: show shopping basket

! Designentscheidung: Customer-Service bildet die alleinige Schnittstelle

für Customer-Client, keine Verbindung mehr zu Offering-Service

customer-service und offering-service kommunizieren intern über kafka

(19:40)

siehe auch: event message flow model "Scenario: Customer adds item to

Appendix 33

shopping basket"

event: z.B. offeringID oder name ändert sich oder wird gelöscht

20.12.22 - 11:50 Uhr - Angular Frontend, json-server (simuliertes backend)

button: AddToBasket

frontend design-überlegungen (2 views + navigation, warenkorb (mit remove

button) und offeringliste (mit addToBasket button)) (13:00 Uhr)

20.12.22 - 14:27 Uhr - Kafka research, topics, partitions, consumer groups,

replication factor

überlegungen zu kafka-funktionsweise und threads

(!) consumer-loop in eigenem thread

pause (15:45)

20.12.22 - 16:50 Uhr - neues projekt mit confluent kafka + controll center

2 services + kafka

producer sendet message, kommt in kafka an, kafka-logging um message

einzusehen, noch kein consumer (17:30 Uhr)

21.12.22 - 13:30 Uhr - .NET backend (v2, weather) senden

2 topics (weather+confirmation), zweiter service soll mit "ok" antworten

kafka ist sehr schnell wenn alles läuft, aber vorher dauert es wenn topics

angelegt/geändert werden bis alles initialisiert ist

21.12.22 - 14:00 Uhr - Meeting mit Michael

sind threads der richtige denkansatz? => beides geht aber threads sinnvoll

manche services in .net andere in python => eher abgeraten

informationen von consumer-thread in den main-thread

anderer ansatz: customer-service gibt statische antwort, danach

(unabhängig) die nächsten schritte

wiederholbare tests schreiben (code- oder textform) und festhalten

kleine schritte machen

interne synchrone kommunikation der services mit socket? socket, pipes, in

datei schreiben oder rest-endpoint, vielleicht sogar auch asynchron über kafka

Appendix 34

(15:10 Uhr)

21.12.22 - 15:13 Uhr - kafka + 2 Services, beide producer und consumer, cunsumer-loop

läuft in background thread, anderer thread produced

neu:

1.Service: produce im main-thread, consume-loop in background-thread

2.Service: consume-loop in main thread, bei event wird produce-thread

gestartet

PROBLEM: 2.Service daten kommen nicht in kafka an

while-statement der consume-loop geändert (wartet nicht mehr auf eingabe)

while-loop entfernt (daten werden nun einmalig gesendet)

LÖSUNG: producer.flush() um zu warten bis nachricht raus ist bevor thread

beendet wird

funktioniert (16:29 Uhr)

21.12.22 - 16:43 Uhr - (Service1,Service2,compose -> 84+74+170 = 328) eigentlich

falsch die compose mit reinzurechnen, eigentlich spielt nur ne rolle wieviel wir

gecoded haben, ändern!!

22.12.22 - 13:00 Uhr - .NET Backend, producer, customer-service, GetAllOfferings,

GetMessage

customer-service mit api -> sendet an offering-serice ("alter" consumer

wird umgebaut), swagger als client

ergebnis eines threads an main-thread zurückgeben

ergebnis an swagger senden

PROBLEM: erster durchlauf geht, bei der zweiten Anfrage wird scheinbar der

thread nicht gestartet und swagger erhält nur die dummy-antwort

thread-liste implementiert

static thread-variable implementiert

git commit (customer-service (offering-controller),

KafkaConsumerHandler(Thread), Consumer => 110+50+75 = 235 Zeilen Code)

22.12.22 - 13:05 Uhr - neubau im sinne des python-ansatzes, nun aber komplett mit

.NET (in Windows) und API+Swagger, Kafka läuft in einer Linux-VM

klassen für offering und product

speicherung von offerings und products in dateien als json-objekt

problem mit rest-api (max retries received) (18:23 Uhr)

22.12.22 - 18:50 Uhr - .NET backend (orginal-Version)

Appendix 35

Client -> Customer-Service - erhält http request, sendet an kafka in

offeringRequest, hört auf topic offeringResponse

Offering-Service subscribed auf offeringRequest - sendet offerings auf

topic offeringResponse

Customer-Service erhält Offerings sendet als http response an Client

-> funktioniert! (19:03 Uhr)

PROBLEM: dauert sehr lange, irgendwo auf dem rückweg zwischen kafka und

offering-serivice

scheinbar muss in der konsole des jeweiligen services eine taste gedrückt

werden damit es weitergeht? manchmal?!

überlegungen zur persistenten speicherung (txt-datei oder sqllite) (19:15)

23.12.22 - 12:30 Uhr - klärende Gespräche zur Einigung welcher Ansatz final verwendet

wird, ab jetzt Arbeit aller Teammitglieder an genau einem Projekt

.NET6, Visual Studio, Kafka in Linux-VM, 1 Projekt für alle Services (1

cs.-Datei pro Service), swagger für http-request

probleme mit sdk-versionen beheben, verschiedene pakete installieren

NET-SDK unterstützt .NET6.0 nicht, neues SDK

versionskonflikte zwischen visual code 2019 und 2022, Verwendung von 2022

löste die Probleme

customer-service, offering-service, getAllOfferings funktionert komplett

(15:08 Uhr)

23.12.22 - 15:16 Uhr - github commit (customer-service, offering-service, customer-

controller, program.cs -> 61+81+63+28 = 233 Zeilen Code)

WINTERPAUSE

08.01.23 - 12:50 Uhr - customer-klasse (int id, string name,

list<offerings>shoppingBasket)

POST customer legt offering in warenkorb

createCustomer

Diskussion: sollte der client auf die verschiedenen Services zugreifen

können oder hat er genau einen "Ansprechpartner"?

Nutzen wir Kafka falsch?

eigener payment service sinnvoll? (mit wolf klären)

Architektonische Überlegungen

Appendix 36

removeFromCart() (14:50 Uhr)

08.01.23 - 14:52 Uhr - Angular Frontend repository

view für offerings und warenkorb (navigationsleiste)

design-überlegungen

08.01.23 - 15:23 Uhr - Backend: order-service, order-Klasse

place order [von client an customer-service] (order enthält customerID und

offeringliste des warenkorbs)

client -> customer-service -> order-service

id-vergabe für orders

(16:15 Uhr)

08.01.23 - 16:16 Uhr - github commit (customer-service, offering-service, order-

service, customer-controller, program.cs, order-klasse, product-klasse, offering-

klasse, customer-klasse ->

96+81+81+99+29+8+10+10+9 = 423 Zeilen Code)

11.01.23 - 12:16 Uhr - Angular Frontend

mit backend verbinden (getAllOfferings)

Klick auf + eines offerings sendet customerID und offeringID ans backend -

> addToCart(cID,oID)

Warenkorb anzeigen führt für jedes Item getOfferingByID() aus um an die

Offering-Daten zu kommen.

Shop-Owner Funktionen möglicherweise nur über swagger (extra view für shop

owner auf die optionale liste).

11.01.23 - 13:05 Uhr - .NET Backend showOrders()

getOfferingByID()

(14:14 Uhr)

11.01.23 - 14:20 Uhr - Meeting mit Wolf und Michael

beide uml (vorher/nachher) vergleichen, wenn etwas ausfällt, passiert...

(restfull vs kafka)

einzeln durchspielen: order-service fällt aus, offering-service fällt aus,

...

analyse auf resilienz-verbesserung

Appendix 37

"richtig"-eventbasiert (z.B. Order-Archivierungsservice)

ist event-kafka besser als request/response-kafka

selbst große architektur-teams machen ähnliche "fehler" wie mir, synchrone

denkweise vs event-denkweise , paradigmen-wechsel/denkmodell

-> resilienzfrage beantworten

-> archiv-service

-> vogel-frage

-> weg über rest/synchron über kafka-request/response zu wirklich event-

basiert

order und payment sind entkoppelt, microservice-bedingt trennen,

kundendaten getrennt von zahldaten, separation of concerns

order+payment auch asynchron

(16:11 Uhr)

11.01.23 - 16:12 Uhr - .NET Backend übertragene Funktion verursacht Fehler gefixt.

(16:21 Uhr)

13.01.23 - 10:10 Uhr - crud offering/product (create und delete) (10:50 Uhr)

payment service -> nimmt orderID entgegen und erzeugt payment (zusammen

mit date) -> sendet event an kafka dass orderXY bezahlt wurde

order-Service subscribed auf payment-channel, kommt etwas rein wird die

entsprechende order auf "paid" gesetzt

(11:23 Uhr)

14.01.23 - 10:40 Uhr - Überlegungen zur Erweiterung eines Event-basierten Services

Order-Archivierung: hört auf kafka order-channel und zieht sich nur die

orderID+customerID+Datum (10:57)

Order-Archiv-Service: 61 Zeilen Code

Archiv-Service Test erfolgreich (11:08 Uhr)

Finaler Umfang:

Product-Klasse -> 10 Zeilen

Payment-Klasse -> 5 Zeilen

Order-Klasse -> 8 Zeilen

Offering-Klasse -> 10 Zeilen

Customer-Klasse -> 9 Zeilen

Customer-Service -> 87 Zeilen

Offering-Service -> 110 Zeilen

Appendix 38

Order-Archive-Service -> 61 Zeilen

Order-Service -> 120 Zeilen

Payment-Service -> 36 Zeilen

Customer-Controller -> 120 Zeilen

Order-Controller -> 32 Zeilen

Payment-Controller -> 32 Zeilen

Product-Controller -> 53 Zeilen

Program.cs -> 30 Zeilen

-> 723 Zeilen Code Total

(11:33 Uhr)

14.01.23 - 11:39 Uhr - Überlegungen zur Evaluation:

Unterscheidung zwischen "(lupenrein) Eventbasiert", "Pseudo-Eventbasiert"

und sync

PROBLEM: Services laufen in einem Projekt und können nicht unabhängig

voneinander gestoppt und gestartet werden

ANSÄTZE: Globale Variable die zur Laufzeit geändert wird

CheatEngine

Auskommentieren der StartService() zur Laufzeit

LÖSUNG: getrennte Projekte für Services (git commit 12:40 Uhr)

ports anpassen, kleinere fixes

(13:07 Uhr)

17.01.23 - 14:27 Uhr - Planung der Tests für Evaluation:

1. Test:

Order-Archiv-Service fällt aus:

-> Keine Auswirkung, der Rest läuft ganz normal weiter, alle Funktionen

verfügbar, Kafka speichert die Daten, sobald Archiv-Service wieder da erhält er die

Daten

-> wäre es synchron, gäbe es beim Versuch eine Order zu erstellen im

customer-service einen fehler oder er wäre blockiert (error/timeout/retry)

2. Test:

Order-Service fällt aus:

Appendix 39

-> Order wird erst erstellt, sobald Service wieder läuft, kafka verwahrt

die Daten, Customer-Service läuft normal weiter

-> wird während des ausfalls ein payment erstellt bekommt order-service

die info von kafka wenn er wieder oben ist

-> wäre es sync, fehler im customer-service, orders können nicht erstellt

werden, customer-service blockiert

3. Test:

Payment-Service fällt aus:

-> (synchron zwischen client und payment-service) "pay order" kann nicht

ausgeführt werden, fehler beim client, sonst keine auswirkung

4. Test:

Offering-Service fällt aus:

-> shop-owner funktionen (synchron client+offering-service) können nicht

ausgeführt werden

-> "get all offerings" funktioniert nicht, offerings können beim client

nicht geladen werden

-> event-basiert könnten (z.B) neue products erstellt und in kafka

zwischengespeichert werden

-> offerings könnten redundant im customer-service gespeichert werden

(event-basiert könnte customer-service auf den channel subscriben in dem neue

offerings gepostet werden)

5. Test:

Customer-Service fällt aus:

-> (customer-) Client kann nicht auf Applikation zugreifen da customer-

service quasi als API-Gateway dient

-> event-basiert hier möglich/sinnvoll?

6. Test:

Kafka fällt aus:

-> Auswirkungen auf sevices die an kafka senden wollen?

-> "getAllOfferings", "placeOrder", "payOrder"

(15:00 Uhr)

17.01.23 - 15:01 Uhr - Evaluations-Abschnitt im Paper aufsetzen und erste Texte

(15:50 Uhr)

Appendix 40

18.01.23 - 11:30 Uhr - Durchführung der Resilience-Tests (siehe oben) und

Überlegungen

1. Test (archivierungs-service fällt aus):

- Archivierung wird wie erwartet nachgeholt (quasi null wartezeit)

2. Test (order-service fällt aus):

- Order wird archiviert obwohl sie strenggenommen noch nicht exisitert!

- sobald order wieder läuft wird order erstellt wie erwartet (quasi

null wartezeit)

- kommt ein payment in der zeit des ausfalls wird es später

nachgetragen (’paid’) wie erwartet

- sollte eine order während des ausfalls erstellt und bezahlt werden -

> RACE CONDITION!!!

3. Test (payment-service fällt aus):

- payment kann vom client nicht durchgeführt werden, sonst keine

auswirkung wie erwartet

4. Test (offering-service fällt aus):

- keine shopowner funktionen

- getAllOfferings gibt "alte" liste falls customer-service bereits

offerings angefortert hat (customer-service speichert sich eigene liste)

- im falle einer nicht aktuellen liste sähe der client unter umständen

offerings, welche z.b. nicht mehr existieren

5. Test (customer-service fällt aus):

- kein zugang zur applikation

- only payments möglich

- shopwoner funktionen möglich

6. Test (kafka fällt aus):

- shopowner funktionen gehen

- timeout für quasi alles andere

(13:33 Uhr)

18.01.23 - 13:33 Uhr - Übertragung der Testergebnisse ins Paper

(14:39 Uhr)

18.01.23 - 15:20 Uhr - Strukturierung des Papers

Appendix 41

Evaluierung des Tagebuchs

Tabelle: ausgefallener Service -> Funktionen

(16:37 Uhr)

19.01.23 - 11:35 Uhr - openapi spec file(s) für den anhang

wo kommen schemas her?

asyncapi files(?)

(12:05 Uhr)

19.01.23 - 12:42 Uhr - Paper Abschnitt über Zeiten/Code/Probleme

zeiten erfassen für verschiedene schritte

(14:15 Uhr)

26.01.23 - 11:20 Uhr - Paper Abschnitt über Zeiten/Code/Probleme

(14:30 Uhr)

27.01.23 - 11:00 Uhr - Paper Conclusion, Outlook

Architektur v2 Diagramm

Übersetzungen

Tagebuch Anhang

(14:11 Uhr)

	Abstract
	List of Figures
	1 Introduction
	2 Fundamentals
	2.1 Event based architecture
	2.2 Microservices
	2.3 Communication
	2.3.1 Communication vs. Protokoll
	2.3.2 Synchronous Communication
	2.3.3 Asynchronous Communication

	3 Investigation using the example of an eCommerce application
	3.1 Domain description
	3.2 Derive architectural properties from domain-specific requirements
	3.3 Tradeoff ASYNC
	3.3.1 Error handling
	3.3.2 Performance
	3.3.3 Availability
	3.3.4 Testability/Maintainability
	3.3.5 Data loss
	3.3.6 Extensibility
	3.3.7 Scalability
	3.3.8 Responsiveness
	3.3.9 Consistency
	3.3.10 Resilience
	3.3.11 Business aspect

	4 Decisions
	4.1 Shop owner adds, updates or removes product or offering
	4.2 Customer adds or removes item to/from shopping basket
	4.3 Customer places order
	4.4 Customer pays order
	4.5 Customer does not pay order
	4.6 Shop owner checks order status
	4.7 Decision Tree
	4.8 Preparing the Coding Exercise

	5 Coding Exercise and Evaluation
	5.1 Extensibility
	5.1.1 Adding an additional service: Order archiving

	5.2 Resilience-Tests
	5.2.1 1. Test: Order archiving service fails
	5.2.2 2. Test: Order service fails
	5.2.3 3. Test: Payment service fails
	5.2.4 4. Test: Offering service fails
	5.2.5 5. Test: Customer service fails
	5.2.6 6. Test: Kafka fails
	5.2.7 Resilience Tests Conclusion

	5.3 Effort
	5.4 Evaluation Conclusion

	6 Conclusion
	7 Outlook
	Appendix
	.1 Developer Diary (devlogs)

