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Abstract I 

Abstract 

This thesis investigates the integration of structural and semantic elements in 

modeling argumentative discourse using enriched argumentation graphs. Tradi-

tional frameworks often prioritize either structural relationships or semantic con-

tent, rarely combining the two effectively. By employing graph embeddings and 

advanced textual embeddings from large language models, this study proposes 

a framework to capture the nuanced interplay of arguments in complex discourse. 

The methodology involves constructing enriched argumentation graphs that inte-

grate structural and semantic insights, offering a comprehensive representation 

of argumentative interactions. Techniques such as dimensionality reduction and 

clustering were used to evaluate the effectiveness of these enriched embeddings. 

Results show that combining structural and semantic dimensions enhances the 

clarity and interpretability of argumentation models, outperforming traditional ap-

proaches in representing nuanced roles and relationships. 

The research contributes to computational argumentation and discourse analy-

sis, providing a foundation for practical applications such as discourse evaluation, 

debate summarization, and semantic search. Future work could focus on auto-

mating argumentation graph construction, integrating multimodal data, and incor-

porating temporal dynamics to analyze discourse evolution. While limitations in-

clude reliance on synthetic datasets and computational demands, this study of-

fers a meaningful step toward bridging structural and semantic insights in com-

putational argumentation. 

 

Keywords: Computational Linguistics, Computational Argumentation, Natural 

Language Processing, Network Science, Abstract Argumentation Framework, Ar-

gumentation Graph, Representation Learning, Discourse Analysis, Collective 

Sensemaking, […]
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1 Introduction 

In the contemporary digital landscape, public communication platforms have be-

come instrumental in shaping discourse and facilitating collective decision-mak-

ing processes. For instance, recent studies have shown that social media plat-

forms like Twitter and Facebook influence political engagement, while online fo-

rums often serve as critical venues for community decision-making, highlighting 

the significant role these platforms play in public discourse [1], [2]. However, as 

these platforms have expanded in both scale and complexity, traditional methods 

of discourse analysis have encountered substantial challenges in effectively cap-

turing the full scope of argumentative interactions that take place within them. 

The rapid, dynamic nature of digital communication introduces levels of complex-

ity — such as speed, scale, fragmentation and diversity of participants — that 

challenge conventional models due to the need for rapid processing, scalability 

across diverse conversations, and capturing varied participant perspectives. The 

transformation of public spaces in the digital age echoes themes critically exam-

ined by Habermas in The Structural Transformation of the Public Sphere [3, pp. 

141–175], where he explores shifts in discourse resulting from changes in com-

munication structures. 

Modern digital platforms, including social media networks and online forums, pri-

oritize engagement-driven content, often due to advertising revenue and user re-

tention metrics, which frequently amplifies sensational or polarizing messages, 

as highlighted by the findings that algorithmic content ranking and user choices 

limit exposure to diverse viewpoints [4]. Pariser highlights how these algorithms 

orchestrate not only the advertisements we see but also our entire digital experi-

ence, creating a 'filter bubble' that alters how we encounter ideas and information 

[5, p. 10].  

Empirical research further substantiates these claims, demonstrating the extent 

to which social media can exacerbate polarization within public discourse [6, p. 

9216]. Sunstein similarly argues that echo chambers, intensified by social media, 

undermine effective governance, making it increasingly difficult to converge on 

sensible solutions [7, p. 10]. The algorithmic mechanisms underpinning content 

curation inherently favor posts that provoke strong emotional responses — 

whether positive or negative — leading to the amplification of extreme viewpoints 
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and the marginalization of more moderate or opposing perspectives. Conse-

quently, this design dynamic contributes to a progressively divided public sphere. 

Similarly, Tufekci’s Twitter and Tear Gas highlights that social media platforms, 

driven by ad-financed algorithms, often filter content in ways that favor advertiser-

friendly material, which can drown out activist messages, undermine constructive 

dialogue, and contribute to growing polarization [8, p. xxix]. The structural attrib-

utes of digital platforms inherently challenge the facilitation of nuanced and in-

depth discussions. Instead, they often replace these discussions with brief, reac-

tionary exchanges that fail to delve into substantive issues.  

1.1 Background 
Argumentation theory and associated frameworks, such as argumentation 

graphs, offer a foundational basis for modeling argumentative interactions [9, Ch. 

3]. Argumentation graphs serve as visual representations that delineate the rela-

tionships between different arguments, including support, attack, and counter-

argumentative dynamics. However, these traditional models frequently fall short 

in capturing the full semantic depth and complexity characteristic of real-world 

discourse. The intricacies of human communication — such as implicit meanings, 

rhetorical strategies, and emotional undertones — are often not adequately rep-

resented in these models. For example, arguments may involve unexpressed 

premises that remain implicit but are central to the argumentative process [10, p. 

4]. Traditional argumentation graphs typically map the structural and logical rela-

tionships between arguments but do not account for the more profound layers of 

meaning, context, or the underlying intentions shaping discourse. 

To address these limitations, recent advancements in both graph and textual em-

beddings present new opportunities for enhancing argumentation models. Graph 

embeddings enable the representation of structural elements in a continuous vec-

tor space, making it easier to capture complex argumentative relationships. 

These embeddings are particularly useful in preserving the structural properties 

of arguments while reducing computational complexity [11, pp. 833–834]. For in-

stance, they have been applied to visualize argument clusters and relationships, 

revealing deeper structural insights in argumentative graphs [12, pp. 3–4]. 

Conversely, textual embeddings leverage deep learning based natural language 

models like BERT, which excels at capturing the semantic richness of discourse, 
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including implicit premises and emotional tones. Such embeddings enhance the 

ability to model long-range dependencies and latent themes within arguments 

[13, pp. 1–2]. The integration of these embeddings with graph structures allows 

for a comprehensive understanding of both the structural and semantic layers of 

discourse [14, pp. 1–2]. This combined approach supports more robust analysis, 

unveiling underlying drivers and themes in complex argumentative contexts [15, 

p. 4158]. 

Beyond its contributions to discourse analysis, the argumentation model devel-

oped in this thesis has the potential to serve as a foundational element within a 

computational engine designed to support diverse applications, including debate 

evaluation, argument summarization, argument quality assessment, retrieval-

augmented generation (RAG) systems, and conversational systems. By enrich-

ing argumentation graphs with both structural and semantic insights, this model 

could power tools that analyze, retrieve, and generate discourse content with high 

relevance to specific user queries or contexts. Although this thesis concentrates 

on generating and the evaluation the embeddings, the broader implications sug-

gest potential utility across public communication platforms and decision-support 

environments, enabling users to navigate complex debates and access relevant 

discourse effectively while making argument-based insights accessible and ac-

tionable. 

1.2 Problem Statement 
Traditional argumentation models exhibit significant limitations in their capacity to 

capture and analyze the semantic nuances and contextual dimensions inherent 

in complex debates. While these models effectively represent the logical structure 

of arguments — such as identifying which statements support or contradict one 

another — they fall short in representing the more subtle dimensions of discourse, 

such as shifts in tone, implicit argumentative strategies, and emotional fluctua-

tions. These shortcomings are particularly pronounced in structured debates, 

where participants may employ rhetorical devices, sarcasm, or emotionally 

charged appeals to bolster their arguments, elements which traditional graph 

models struggle to effectively encapsulate. 

To address these deficiencies, this thesis aims to enhance argumentation graphs 

through the integration of graph and textual embeddings. By combining these two 
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methods, the resulting enriched model will provide a more comprehensive repre-

sentation of arguments, encompassing both structural relationships and semantic 

content. This enriched approach could facilitate a more thorough discourse anal-

ysis, potentially revealing semantic patterns, rhetorical strategies, and argumen-

tative nuances that traditional models often overlook. Such an approach aims to 

elucidate how arguments evolve over time. A deeper understanding of these fac-

tors is critical for meaningful discourse analysis, particularly within complex, real-

world argumentative environments. 

1.3 Research Objectives 
The principal objectives of this research are as follows: 

(1) Develop an argumentation model that encapsulates complex argumentative 

structures, addressing traditional limitations in capturing nuanced relation-

ships and contradictions. 

(2) Generate a synthetic debate dataset using a Large Language Model (LLM) 

to construct argumentation graphs, establishing a robust framework for mod-

eling argumentative dynamics. 

(3) Enrich the semantic embeddings with contextual embeddings based on the 

graph structure to enhance the graph’s representational capacity, enabling 

detailed analysis of discourse elements. 

(4) Compare the semantic, structural, and aggregated semantic embedding 

spaces by visualizing their clustering patterns using dimensionality reduction 

techniques like t-SNE and assessing clustering quality with metrics such as 

the Silhouette Score. This analysis aims to evaluate how effectively each 

embedding space separates argumentative components and captures se-

mantic and structural information, providing insights into their relative 

strengths and weaknesses. 

1.4 Research Questions 
This thesis seeks to answer the following research question: 

How can argumentative discourse be effectively modeled as an argumen-
tation graph that incorporates both structural and semantic elements? 
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1.5 Thesis Structure 
Chapter 2: Literature Review – This chapter will provide a comprehensive re-

view of relevant literature on argumentation theory, argumentation graphs, graph 

embeddings, textual embeddings, and implication of such models for computa-

tional argumentation. It will also examine previous studies that have utilized com-

putational methods to analyze discourse and debates. Furthermore, the chapter 

will identify existing gaps in the literature and demonstrate how the proposed re-

search intends to bridge these gaps. 

Chapter 3: Research Methodology – This chapter outlines the research design, 

including the construction of argumentation graphs using an LLM-generated syn-

thetic dataset, representation learning of both structure and semantics and the 

aggregation of semantic embeddings. It details methods for comparing embed-

ding spaces through visualization with dimensionality reduction (e.g., t-SNE), 

clustering analysis using k-means and Silhouette Score, and a combined evalu-

ation of visual and quantitative metrics to assess argumentative roles and rela-

tionships. 

Chapter 4: Results and Analysis – This chapter will present the findings of the 

study, focusing on the comparative analysis of embedding spaces and their ef-

fectiveness in modeling argumentative roles and relationships. It will include vis-

ualizations of embedding spaces reduced using techniques like t-SNE, accom-

panied by clustering analysis to evaluate the separation and grouping of argu-

mentative elements (e.g., claims, premises). Quantitative metrics, such as Sil-

houette Scores, will be used to assess clustering quality of semantic and aggre-

gated semantic embeddings spaces. 

Chapter 5: Conclusion – This chapter will synthesize the key findings, provide 

conclusive answers to the research questions, and propose future research di-

rections. The conclusion will reflect on the overall contributions of the thesis, em-

phasizing potential advancements in modeling argumentative discourse and con-

sidering the potential theoretical and practical impacts of these contributions. 
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2 Literature Review 

To establish a rigorous theoretical and methodological foundation for this thesis, 

this literature review critically examines existing research and frameworks rele-

vant to the analysis of argumentative discourse in digital environments. Given the 

inherently dynamic, often fragmented nature of online communication, it is imper-

ative to evaluate how traditional argumentation theories and contemporary com-

putational advancements can be leveraged and enhanced to effectively capture 

the complexities of discourse in the digital era. This chapter systematically re-

views foundational concepts in argumentation theory, the application of argumen-

tation graphs, and recent advancements in computational modeling, such as tex-

tual and graph embeddings. 

The literature review commences by exploring the foundational tenets of argu-

mentation theory, encompassing classical frameworks that have profoundly 

shaped our understanding of reasoning and argument structures. Subsequently, 

it critically evaluates the application of these traditional models, elucidating their 

inherent limitations in the context of digital discourse, and emphasizes the in-

creasing relevance of network analysis and computational methodologies in re-

fining argument mapping and discourse analysis. Furthermore, the review delves 

into the integration of textual and graph embeddings, emphasizing their potential 

to transcend some of the limitations of earlier models and to offer a more nuanced 

and comprehensive representation of both the structural and semantic dimen-

sions of discourse. 

Through the synthesis of these diverse research domains, this chapter seeks to 

identify existing gaps in the literature and to elucidate how the proposed research 

aims to bridge these gaps by developing an enriched argumentation model. Ulti-

mately, this review positions the present study within the broader landscape of 

discourse analysis, underscoring its contributions to advancing our understand-

ing of argumentative interactions in the intricate and evolving context of digital 

communication. 

2.1 Argumentation Theory 
Argumentation theory represents an interdisciplinary exploration into the princi-

ples and mechanisms that underpin the formulation, exchange, and evaluation of 
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arguments across diverse domains. These include philosophical, computational, 

and practical applications. It plays an instrumental role in deconstructing the un-

derpinnings of discourse, especially in formalized settings such as debates, legal 

reasoning, and policy-making processes. 

The theoretical foundations of argumentation theory trace back to classical rhet-

oric and dialectics, notably Aristotle's foundational articulation of ethos, pathos, 

and logos as pillars of persuasion. Aristotle argues that persuasion depends on 

the character of the speaker (ethos), the emotional state of the audience (pathos), 

and the logical consistency of the argument (logos) [16, p. 38]. These classical 

concepts evolved into sophisticated frameworks for both formal and informal ar-

gument structures, providing the analytical basis for assessing the logical coher-

ence and persuasive power of arguments. The emphasis on ethos, pathos, and 

logos continues to serve as a crucial tool for understanding how arguments can 

be crafted to appeal to both the rational and emotional faculties of the audience, 

making Aristotle's contributions central to the development of modern argumen-

tation theory. 

This section of the literature review is not intended to be exhaustive but rather 

focuses on the most pertinent models and theories that directly inform the de-

scriptive modeling of argumentative discourse. While there are many significant 

frameworks within argumentation theory, this review selectively highlights those 

that provide the greatest insight into understanding and enhancing the structural 

and semantic analysis of discourse. By concentrating on these targeted models 

and theories, the review aligns closely with the thesis's objective of developing 

an enriched argumentation graph model. This focused approach ensures that the 

discussion remains both relevant and impactful, facilitating a more streamlined 

and contextually significant analysis that directly supports the thesis's research 

goals. 

2.1.1 Toulmin’s Model of Argumentation 

Stephen Toulmin’s The Uses of Argument first published in 1958 presents a prac-

tical framework for understanding arguments, particularly in contexts that extend 

beyond formal deductive reasoning. His model identifies six core components of 

any argument:  

1. Claim (C) - the conclusion being argued,  
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2. Data (D) - evidence supporting the claim,  

3. Warrant (W) - the reasoning that connects the data to the claim,  

4. Backing (B) - further support for the warrant,  

5. Qualifier (Q) - the strength of the claim, 

6. Rebuttal (R) - acknowledgment of counterarguments [9, pp. 89–100]. 

These elements provide a structured way to dissect arguments, making the 

model especially useful for analyzing the informal, fragmented discourse typical 

in digital environments. 

The general layout of this model can be illustrated as follows: 

Example of Toulmin’s Argument Layout 

Toulmin’s model of argumentation can be illustrated using the example of deter-

mining Harry’s nationality. In this case, the claim (C) is that Harry is a British 

subject.” The data (D) supporting this claim is that “Harry was born in Bermuda.” 

The warrant links these two elements by establishing the general principle that 

“A man born in Bermuda may be taken to be a British subject.” Since issues of 

nationality are subject to qualifications, the claim is modified with presumably 

(Q). The rebuttal (R) addresses possible challenges, such as if “both his parents 

were aliens, or he has since become a naturalized American.” Finally, the back-
ing consists of statutes and legal provisions governing British nationality [9, p. 

97]. 

Figure 1 - Diagram illustrating the basic structure 
of Toulmin’s model of argumentation [9, p. 97] 



Literature Review 15 

This argument structure is visually represented in the following diagram: 

A key contribution of Toulmin’s model is its differentiation between field-invariant 
and field-dependent components. Field-invariant elements — such as the 

presence of claims, data, and warrants — are consistent across different con-

texts. However, field-dependent elements, such as the type of evidence or the 

standards for validity, change depending on the domain (e.g., legal reasoning vs. 

scientific discourse) [9, pp. 14–16]. This adaptability makes the model highly rel-

evant to digital discourse analysis, where arguments often pull from multiple fields 

and must accommodate different norms of reasoning. 

Toulmin also critiques the rigid structures of formal logic, arguing that real-world 

reasoning rarely conforms to such idealized forms [9, Ch. 4]. His model provides 

a more flexible approach, accommodating both the structure and the variability of 

everyday argumentation. The warrant, in particular, serves as an essential link 

between data and claim, and in digital discourse, this connection is often implicit 

or unclear. Toulmin’s model helps clarify these connections, making arguments 

more transparent and robust. Additionally, backing reinforces the warrant, ensur-

ing that arguments are well-supported — an increasingly important feature in 

online debates where misinformation can thrive [9, pp. 95–100]. 

Soundness and Argumentative Validity  

When analyzing the structure and effectiveness of arguments, it is essential to 

distinguish between soundness and argumentative validity, concepts pivotal to 

Toulmin's critique of traditional logic. Toulmin argues that while formal validity 

— ensuring that conclusions logically follow from premises — is crucial, it is in-

sufficient for real-world applications that require more than structural consistency 

Figure 2 - Visual representation of Harry’s nationality argument following Toul-
min's model [9, p. 97] 
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[9, pp. 110–114]. He emphasizes that practical arguments often demand an eval-

uation of both the structural form and the contextual backing of the argument’s 

premises.  

In formal logic, validity pertains solely to the logical coherence of the argument. 

Toulmin notes that in structured fields, such as mathematics or formal deduction, 

this form of validity can be maintained simply by aligning data, warrants, and con-

clusions. However, Toulmin critiques this as overly restrictive for practical fields, 

where “field-dependent” standards for validity are often more relevant and adapt-

able to specific domains, like legal or ethical reasoning [9, pp. 118–123, 136–

138]. 

Soundness, in Toulmin’s model, involves both validity and the truthfulness of the 

premises — meaning an argument is only sound if it is valid and its premises are 

true. Toulmin’s framework, particularly his emphasis on warrants and backing, 

shifts the focus beyond logical form to include the credibility and applicability of 

these foundational elements, making soundness a contextually enriched evalua-

tion rather than a purely formal assessment [9, pp. 110–114, 136–138]. For in-

stance, in digital discourse, where claims often span multiple fields, Toulmin's 

model enables a nuanced analysis of whether arguments are not only logically 

coherent but also substantively reliable. 

Implications for Digital Discourse Analysis 

Toulmin’s approach to soundness and validity is particularly valuable in analyzing 

online discourse. His model allows the identification of gaps in reasoning, espe-

cially where field-dependent warrants and backing are implicit or ambiguous. This 

is a critical feature for computational models of discourse, which aim to capture 

both logical and contextual nuances. In summary, Toulmin’s model expands the 

assessment of arguments from rigid structural validity to a more adaptable and 

context-sensitive framework, accommodating the layered complexity of digital 

communication. 

2.1.2  Walton’s Argument Schemes 
Douglas Walton’s contributions to argumentation theory revolve around a series 

of argumentation schemes that represent typical forms of presumptive rea-
soning. These schemes are particularly suited for understanding arguments that 
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operate under uncertainty and involve everyday reasoning rather than purely de-

ductive logic. Walton’s approach is useful in analyzing how arguments function 

within real-world contexts, especially those involving incomplete information and 

dynamic discussion settings [17, Ch. 3]. 

Walton categorizes a range of schemes such as Argument from Expert Opin-
ion, Argument from Analogy, and Argument from Consequences. Each 

scheme provides a generalized structure to understand how conclusions are 

drawn from premises. For instance, in the Argument from Expert Opinion, the 

reasoning takes the form: “Expert E asserts that statement A is true, and E is an 

expert in the relevant field, therefore A is likely true.” The validity of such an ar-

gument is evaluated through critical questions — such as assessing the credi-

bility of the expert, the expert’s reliability, and the presence of any biases [17, pp. 

14–16]. These critical questions serve as a mechanism to safeguard against mis-

use and fallacies, which is crucial for maintaining the quality of argumentative 

discourse. 

An example of a common scheme is the Argument from Sign, where an ob-

served indicator is presumed to suggest a particular conclusion. For instance, 

“John’s hat is not on the peg; therefore, John has left the house” relies on the 

assumption that John habitually wears his hat when leaving. Walton emphasizes 

that inferences are generally defeasible — meaning they can be rebutted if fur-

ther evidence arises, such as finding John still inside the house [17, pp. 13–14]. 

The concept of defeasibility is key to Walton's argumentation schemes, empha-

sizing their tentative nature. 

Walton’s work is also relevant in the context of digital discourse where arguments 

often rely on signals of popularity, such as likes or shares on social media, rather 

than rigorous logical analysis. The Argument from Popularity, which is a type 

of Argument from Appeal to the People (ad populum), suggests that if many peo-

ple believe or endorse a proposition, it is likely true. Walton points out that such 

arguments are inherently presumptive and must be evaluated carefully. Critical 

questions, such as whether the popularity is based on a genuine rational consen-

sus or simply emotional appeal, are essential for assessing their validity in a dig-

ital context [17, pp. 83–85]. 
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In conclusion, Walton's argumentation schemes provide a structured framework 

for understanding and assessing informal arguments. By incorporating critical 

questions and emphasizing the provisional nature of presumptive reasoning, 

Walton’s tools enable the evaluating of both the logical structure and pragmatic 
validity of arguments in various real-world contexts. 

2.1.3  Pragma-Dialectics in Argumentation Theory 
The pragma-dialectical approach, developed by Eemeren and Grootendorst, pre-

sents a systematic model for analyzing argumentative discourse that integrates 

pragmatic and dialectical elements, emphasizing the role of structured, rule-gov-

erned discourse in resolving differences of opinion. Unlike classical rhetorical ap-

proaches that emphasize persuasion, pragma-dialectics focuses on achieving 

resolution through collaborative critical discussion. This is articulated through the 

concept of a “critical discussion,” a structured dialogue where participants test 

opposing views by adhering to a set of norms aimed at fostering rational ex-

change [10, pp. 42–44, 51 ff.]. 

The model establishes four key stages in a critical discussion: confrontation, 

opening, argumentation, and concluding. In the confrontation stage, participants 

identify and clarify their disagreements. In the opening stage, procedural rules 

and mutual commitments are established, laying the groundwork for a coopera-

tive exchange. During the argumentation stage, participants present and chal-

lenge arguments, advancing their respective standpoints. Finally, the concluding 

stage determines the discussion's outcome, ideally leading to consensus or a 

reasoned acknowledgment of remaining differences. This structure helps man-

age argumentative complexity, maintaining coherence and fostering resolution 

[10, pp. 57–62]. 

Meta-Theoretical Principles: Functionalization, Externalization, Sociali-
zation, and Dialectification 

Pragma-dialectics is structured around four core meta-theoretical principles that 

guide its framework: functionalization, externalization, socialization, and dialecti-

fication. These principles help distinguish pragma-dialectics from other models 

by focusing on both normative and practical dimensions [10, p. 52]. 
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1. Functionalization interprets each linguistic move in argumentation as a 

purposeful act directed at resolving the dispute, emphasizing the role of 

each statement in advancing the discussion [10, pp. 52–54]. 

2. Externalization focuses on publicly observable commitments, analyzing 

the actual claims participants make rather than speculating about inten-

tions, thus promoting transparency [10, pp. 52–55]. 

3. Socialization highlights argumentation’s interactive nature, framing argu-

ments as part of a collaborative process where participants respond and 

adapt to each other’s contributions [10, pp. 53–56]. 

4. Dialectification formalizes argumentation as a rule-governed exchange, 

ensuring contributions are structured for critical evaluation rather than per-

suasion alone, reinforcing procedural standards of reasonableness [10, pp. 

52–53, 57]. 

Types of Speech Acts 

In pragma-dialectics, speech acts are essential tools that shape the direction and 

effectiveness of argumentative discourse. Each type of speech act contributes 

uniquely to the process of critical discussion, aligning statements and responses 

with the objective of resolving differences rationally. By categorizing speech acts, 

pragma-dialectics provides a framework that clarifies how each communicative 

move advances the discourse, either by establishing claims, requesting elabora-

tion, committing to a course, expressing attitudes, or signaling shifts in the de-

bate's status. 

Assertives are foundational, conveying claims or information that serve as prem-

ises for argumentation. For instance, a statement like “The data supports this 

conclusion” sets the groundwork for further discussion by presenting a factual 

basis for a viewpoint [10, pp. 63–64, 67–68]. Meanwhile, directives aim to 

prompt a response or action from the other party. Examples include requests for 

evidence or challenges to clarify a position, as in, “Can you provide proof?” which 

pushes the discussion toward greater depth and justification [10, p. 64, pp. 67–

68]. 

Commissives are acts through which a speaker commits to a stance or course 

of action, thereby setting mutual expectations in the dialogue. Statements like “I 

will defend this point” help establish reliability and focus, reinforcing participants' 
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commitments to constructive engagement [10, pp. 64–65, 67–68]. Expressives, 

on the other hand, convey the speaker's attitudes, such as agreement or respect, 

often influencing the cooperative tone of the interaction. For example, saying “I 

appreciate your point” fosters goodwill and a collaborative atmosphere, which can 

be crucial for productive discourse [10, p. 65, pp. 67–68]. 

Finally, declarations are statements that enact a change in the state of the dis-

cussion, such as formally concluding or redirecting it. By stating, “This debate is 

concluded,” a participant may signal the end of a discussion, marking an essential 

transition in the discourse [10, pp. 66–68]. 

Each type of speech act serves a specific purpose, keeping contributions pur-

poseful and aligned with the goal of resolving the discussion rationally. In pragma-

dialectics, this categorization enables a nuanced analysis of argumentative inter-

actions, making it possible to see how each move in the dialogue contributes to 

or detracts from the critical discussion’s progress. 

Problem Validity and Intersubjective Validity 

In addition to the four principles above, pragma-dialectics incorporates the meta-

theoretical criteria of problem validity and intersubjective validity, which are es-

sential for evaluating the quality of argumentative discourse. 

Problem Validity assesses whether the contributions in a discourse effectively 

advance the resolution of the issue at hand. Arguments are deemed problem-

valid when they adhere to the procedural rules of the pragma-dialectical model, 

facilitating a genuine move toward resolving the central disagreement. This en-

sures that each step in the discourse aids in clarifying or addressing the main 

point of contention, preventing fallacies that might derail or distort the argument 

[10, pp. 17, 22, 132]. Problem validity is integral to maintaining the quality of dis-

course, as it reflects adherence to a methodical code of conduct that precludes 

discussion violations, ensuring that the argument remains focused on resolution 

[10, pp. 57, 187]. 

Intersubjective Validity, on the other hand, emphasizes the shared acceptance 

among discussion participants. For an argument to be intersubjectively valid, it 

must be deemed reasonable by all parties involved within the discussion frame-

work [10, pp. 17, 22, 129]. This criterion reinforces mutual recognition of 
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argumentative moves as rational, fostering an environment of trust and coopera-

tion [10, p. 57]. By ensuring that participants assess arguments based on mutu-

ally agreed-upon standards, intersubjective validity allows the discourse to ad-

vance constructively, even when disagreements persist [10, p. 187]. 

Relevance to modelling Argumentative Discourse 

While pragma-dialectics does not directly inform the technical design of the en-

riched argumentation graph central to this thesis, it provides essential guidance 

for conducting a structured debate as a case study. The four meta-theoretical 

principles and the criteria of problem and intersubjective validity offer a framework 

for ensuring that discourse within the study adheres to high standards of ration-

ality and fairness. By structuring the debate in accordance with these principles, 

a case study establishes a disciplined environment, facilitating a robust evalua-

tion of how effectively the enriched model captures discourse patterns based on 

structured, rational exchanges. 

2.1.4  Key Developments in Computational Applications of Argumen-
tation Theory 

The integration of computational methods into argumentation theory has signifi-

cantly advanced the analysis and modeling of complex argumentative structures. 

This evolution has led to the development of sophisticated tools and frameworks 

that enhance our understanding of argumentation in various contexts. 

One notable advancement is the emergence of argument mining, a subfield of 

natural language processing (NLP) focused on automatically identifying and ex-

tracting argumentative components from textual data. This process involves de-

tecting premises, conclusions (or claims), and other argumentative elements and 

the relationships between them, facilitating large-scale analysis of argumentative 

discourse especially within the realm of digital communication. Machine learning 

techniques have been instrumental in this domain, enabling the development of 

models that can process and analyze vast amounts of text to identify argumenta-

tive structures [18, pp. 99–100]. Recent developments employ pre-trained trans-

former-based deep-learning models, such as BERT, GPT and T5, which can be 

fine-tuned for specific argumentation mining tasks [19], [20]. These models are 

also versatile enough to be trained for additional tasks like sentiment analysis, 

summarization, classification, and similarity analysis [21, Sec. VIII]. These 
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developments opened the door to new applications of NLP and deep learning in 

a diverse range of computational linguistic tasks, which will be further explored in 

later chapters. 

Another significant development is the application of formal argumentation 
frameworks in various domains. These frameworks provide structured represen-

tations of arguments and their interrelations, allowing for the systematic evalua-

tion of argument validity and strength. Dung's foundational work [22] established 

the groundwork for abstract argumentation frameworks used in AI. 

Furthermore, the development of computational models of argumentation has led 

to practical applications across various domains. Rahwan and Simari's provide 

comprehensive coverage of argumentation in AI, highlighting various computa-

tional techniques [23]. 

In summary, the computational turn in linguistics has introduced powerful tools 

and methodologies that enhance the analysis, modeling, and application of argu-

mentative discourse. These developments have paved the way for more nuanced 

and scalable analyses of arguments, particularly in digital environments where 

the volume and complexity of discourse continue to grow. 

Building upon these advancements, the subsequent section will delve into Ab-
stract Argumentation Frameworks, a pivotal framework that represents argu-

mentative structures as networks. This approach facilitates the visualization and 

analysis of complex argumentation patterns, offering deeper insights into the in-

terplay between different argumentative components. 

2.2 Abstract Argumentation Frameworks 
Argumentation graphs serve as visual and computational representations of ar-

guments, capturing relationships such as support, attack, and counterarguments 

among different claims. Dung's abstract argumentation framework [22] has 

revolutionized the formalization of argumentation by providing a versatile and ro-

bust methodology for analyzing interactions between arguments. This approach 

finds utility across domains such as artificial intelligence, social reasoning, and 

decision-making.  
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2.2.1  Dung’s Abstract Argumentation Framework 
In this framework, arguments are treated as abstract entities, disconnected from 

their internal structure, to focus solely on their interactions — specifically attacks 

and defenses. This abstraction enables the analysis of arguments in diverse do-

mains, from artificial intelligence to social reasoning. 

Dung’s framework formalizes argumentation by representing arguments and their 

interactions as a pair: 

!" = (!%, '((')*+), 

where -. is a set of arguments, and /00/123 ⊆ -. × -. specifies which argu-

ments attack others. 

A set 6 ⊆ -. is conflict-free if no two arguments in 6 attack each other.  

(1) An argument - is acceptable with respect to 6 if every argument attacking - 

is counter-attacked by some argument in 6 .  

(2) A set 6 is admissible if it is conflict-free and all its arguments are acceptable 

with respect to 6 itself [22, p. 326]. 

Dung’s framework also introduces argumentation semantics to evaluate the 

status of arguments in the graph: 

• Grounded Extensions: These represent the minimal fixed point of the 
framework’s characteristic function 7, offering a conservative baseline of 
acceptable arguments [22, p. 329]. 

• Preferred Extensions: Maximal admissible sets, representing the most 
inclusive defensible arguments [22, p. 327]. 

• Stable Extensions: Sets that are conflict-free and attack every 
argument not included in the set, representing a stricter notion of 
argument acceptability [22, p. 328]. 

Grounded extensions provide a cautious approach, ensuring universal accepta-

bility, while preferred extensions emphasize inclusivity. Stable extensions, the 

strictest of the three, guarantee that all external arguments are attacked, reflect-

ing a robust standard for argument acceptability. 

Example: Consider a debate over climate action. Let -! represent the claim 

"Reducing carbon emissions will mitigate climate change," while -" states 

"Mitigation efforts are economically unsustainable," attacking -!. Meanwhile, -#, 
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asserting "Long-term economic stability depends on climate action," counters -". 
If -# successfully undermines -", then -! becomes defensible, highlighting -#’s 

pivotal role in validating -!. This interplay is visually represented as a graph 

where nodes -!, -", and -# denote arguments, and directed edges represent 

attacks and counterattacks.  

The power of Dung’s framework lies in its generality and adaptability. For 

example, the Nixon diamond problem, a classic test case, involves conflicting 

arguments: "Nixon is a pacifist because he is a Quaker" (A1) versus "Nixon is 

anti-pacifist since he is a republican" (-") [22, p. 327]. Here, both arguments 

attack each other, resulting in two preferred extensions ({A1}	and {-"}) but no 

stable consensus under grounded semantics. This illustrates how different 

semantics lead to distinct outcomes, enabling nuanced analysis of argument 

structures. 

Dung's framework has proven invaluable in analyzing conflicts, providing tools for 

diverse applications, from automated reasoning to ethical deliberation. The ab-

stract nature of Dung’s framework ensures broad applicability, offering a founda-

tion for automated reasoning systems, ethical deliberation, legal analysis, and 

multi-agent systems. By resolving conflicts and evaluating the acceptability of ar-

guments, it has become a cornerstone in computational argumentation and deci-

sion support. 

Furthermore, Dung’s theory bridges the gap to broader computational frame-

works, such as logic programming and nonmonotonic reasoning. Stable seman-

tics align with stable models in logic programming, facilitating diverse practical 

applications [22, Sec. 4]. This connection enhances its utility in real-world 

Figure 3 - Argumentation graph illustrating the interplay of attacks and counterargu-

ments in a climate action debate, with !1, !2, and !3 representing key claims 
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contexts, ensuring its relevance in fields as diverse as law, negotiation theory, 

and multi-agent systems, where resolving conflicting perspectives is critical. 

2.2.2  Extensions of Abstract Argumentation Frameworks 
Dung’s foundational abstract argumentation framework provides a robust struc-

ture for analyzing argument interactions, but its focus on binary attack relation-

ships limits its capacity to model more nuanced scenarios. Over the years, vari-

ous extensions of the original framework have been developed to address spe-

cific challenges and expand its applicability. These extensions introduce addi-

tional constructs and relationships to represent more complex argumentative in-

teractions. 

Bipolar Argumentation Framework 

Cayrol and Lagasquie-Schiex extended Dung's foundational framework by 

introducing the Bipolar Argumentation Framework (BAF), which incorporates 

both defeat (attack) and support relations among arguments [24, pp. 378–379]. 

While Dung's framework focused solely on conflict, the BAF acknowledges the 

dual nature of argumentation by explicitly representing support as an 

independent relation, enabling more nuanced modeling of real-world interactions 

where arguments are not only contested but also reinforced [24, pp. 379–382]. 

In the BAF, arguments and their interactions are defined as a triplet (A,	Rdef,	Rsup), 
where Rsup represents positive interactions distinct from the defeat relation Rdef 
[24, p. 382]. This framework introduces the concepts of supported defeat and 

indirect defeat, allowing for richer representations of layered interactions among 

arguments, such as chains of supportive relations culminating in a defeat [24, p. 

383]. For instance, an argument -! might support -", which then defeats -#, 
creating a nuanced interdependence. The capabilities of BAFs can be illustrated 

by revisiting Dung’s climate change example (Figure 3). The BAF enriches this 

scenario by introducing A4, a supporting argument for -#, such as "Economic 

studies show climate action boosts innovation." Here, A4 strengthens -#, which 

in turn counters -", effectively bolstering -!. This multi-layered interaction high-

lights BAF’s ability to integrate both conflict and reinforcement, providing a more 

comprehensive view of argument dynamics. 
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The Bipolar Argumentation Framework further extends Dung's original framework 

by introducing the notions of set-defeat and set-support, which generalize the 

defeat and support relations to apply to sets of arguments. Formally, a set 6 ⊆ - 

is said to set-defeat an argument - ∈ - if 6 contains an argument that establishes 

either a supported or indirect defeat for - [24, p. 383]. Similarly, 6 set-supports 

- if there exists a sequence of support relations emanating from arguments in 6 

that ultimately reinforce -. Building on these relations, the concept of defense by 
a set of arguments is introduced [24, p. 383]. A set 6 defends an argument - 

collectively if, for every argument < that set-defeats -, there exists an argument 

= ∈ 6 that in turn set-defeats <. These generalizations allow for a more robust 

evaluation of argument interactions, particularly in cases where layered or group-

based dynamics play a significant role, thus enhancing the framework's applica-

bility to real-world scenarios.  

To evaluate argument sets under the Bipolar Argumentation Framework, the con-

cepts of conflict-free sets and safe sets provide foundational tools for managing 

interactions. A set is defined as conflict-free if no argument within it set-defeats 

another, ensuring internal coherence and aligning with Dung's original framework 

[24, pp. 384–385]. However, the introduction of the support relation necessitates 

an additional layer of rigor: a safe set satisfies both internal and external coher-

ence by disallowing situations where the same argument is simultaneously set-

supported and set-defeated by the set [24, p. 385]. These concepts form the 

Figure 4 - Bipolar Argumentation Framework illustrating climate action arguments: !2 attacks 

!1, !3 counters !2, and A4 supports !3, reinforcing !1 indirectly. 
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groundwork for revised acceptability semantics that account for both defeat and 

support. 

Building on this foundation, Cayrol and Lagasquie-Schiex refined Dung’s stable 

and preferred semantics to address the dual nature of argument interactions. 

Stable extensions remain conflict-free but must defeat all arguments outside the 

set, considering supportive effects [24, pp. 385–386]. Preferred extensions are 

similarly adapted using criteria like s-admissibility (safe admissibility), which en-

sures external coherence, and c-admissibility (closed admissibility), which re-

quires sets to be closed under the support relation, encompassing all arguments 

that reinforce members of the set [24, pp. 386–387]. These refinements address 

the complexities of real-world argumentation, where positive and negative inter-

actions coexist. 

By capturing the dual nature of argumentative interactions, BAFs enable more 

precise analysis of competing and supportive claims, enabling potential applica-

tions in domains like legal reasoning, negotiation, and multi-agent systems. 

Value-Based Argumentation Framework 

Another significant advancement in modeling argumentation is Bench-Capon's 
Value-Based Argumentation Framework (VAF) [25]. VAFs extend Dung’s 

Argumentation Framework (AF) by associating arguments with underlying 

values, which influence the resolution of conflicts between arguments based on 

the relative importance of these values. Unlike Dung's AF, where the success of 

an attack is determined purely by the structural relationships among arguments, 

VAFs introduce a preference relation over values, allowing the evaluation of 

arguments to reflect the subjective priorities of individuals or groups [25, pp. 1–

2]. 

To illustrate, consider a policy debate over whether to implement universal free 

college education. Suppose there are three main arguments: 

(1) -!: "Free college education promotes social equality" (value: equality), 

(2) -": "Universal free education places an unsustainable financial burden on 

taxpayers" (value: economic efficiency), 

(3) -#: "Access to higher education improves long-term economic productivity" 

(value: innovation). 
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In this example, -" attacks -! because the financial burden undermines equality 

goals, and -# supports -! by emphasizing long-term economic benefits. 

In a VAF, the framework is defined as a five-tuple (-., /00/123, >, ?/@, ?/@ABCD), 
where: 

- -. is the set of arguments (-!, -", -#), 
- /00/123 represents the binary relation denoting attacks (-" attacks -!), 
- > is a set of values (>	 = 	 {CFG/@H0I, C1JKJLH1	CDDH1HCK1I,

HKKJ?/0HJK}), 
- ?/@ is a mapping that associates arguments with values (?/@(-!) =

CFG/@H0I, etc.), 

- ?/@ABCD is a transitive, irreflexive, and asymmetric preference relation on 

> (e.g., CFG/@H0I	 > 	C1JKJLH1	CDDH1HCK1I) [25, pp. 2–3]. 

This formulation allows arguments to be evaluated not only based on their ability 

to counteract others but also on the precedence of the values they promote. 

VAFs are particularly useful in contexts like legal reasoning, ethical debates, and 

public policy discussions, where value judgments play a central role. Continuing 

with the hyptothetical example, if the audience prioritizes equality over 

economic efficiency, -! is likely to be preferred over -", despite -"'s valid 

critique. However, if economic efficiency is prioritized, -" might outweigh -!. 
Similarly, -#'s support for -! becomes more significant if innovation is also highly 

valued. 

A crucial contribution of VAFs is the concept of objectively acceptable 
arguments – arguments that are included in the preferred extension of the 

framework regardless of the value ordering. For example, if -# demonstrates that 

innovation unequivocally supports equality without significantly impacting 

economic efficiency, -# may be objectively acceptable, ensuring that its inclusion 

in the debate transcends subjective value hierarchies [25, pp. 3–4]. This property 

ensures that some arguments can be deemed rationally compelling across 

varying subjective preferences, providing a stable foundation for resolving 

disputes even in highly polarized scenarios. 

Additionally, Bench-Capon introduces strategic heuristics for extending VAFs, 

which can alter the status of arguments by modifying their context within the 
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framework. These heuristics allow participants to strategically influence disputes 

by introducing new arguments, adjusting existing attacks, or altering the value 

preferences that guide the resolution process. For instance, consider introducing 

a new argument A4: "Subsidizing education fosters global competitiveness" 

(value: innovation). This hyptothetical argument counters -"'s financial concerns 

by linking efficiency to long-term benefits. By carefully analyzing the position of 

arguments within chains and the parity of attacking chains, it is possible to shift 

the defensibility of arguments, making them objectively acceptable, subjectively 

acceptable, or indefensible [25, pp. 9–10]. 

In summary, VAFs enhance Dung's AF by integrating value-based reasoning, 

enabling a nuanced analysis of argumentation that accounts for subjective 

preferences. The hyptothetical example of universal free college education 

demonstrates how VAFs allow stakeholders to navigate complex debates, 

weighing arguments not just on logical grounds but also on the competing values 

they represent. This innovation bridges the gap between abstract formal 

frameworks and practical decision-making scenarios, proving indispensable for 

understanding complex argumentative dynamics in domains where values play a 

pivotal role. 

Figure 5 - VAF for Free College Education: The graph illustrates the relationships among 
arguments (!$–!%) in the debate on universal free college education, highlighting their 
interactions and underlying values. 
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2.2.3  Limitations of traditional Argumentation Frameworks 

Abstract Semantics 

Traditional argumentation graphs excel at illustrating structural relationships be-

tween arguments, such as attacks and defenses. However, their abstraction from 

the logical content of arguments imposes significant limitations, particularly when 

applied to real-world scenarios requiring semantic depth and logical consistency. 

Caminada and Wu highlight these challenges, emphasizing the disconnect intro-

duced by abstract evaluation methodologies when handling nuanced argumen-

tative contexts [26]. 

A key issue arises from the three-step process outlined by Caminada and Wu 

[26, pp. 2–3]. The first step involves constructing arguments from a knowledge 

base and identifying attack relations, followed by an abstract evaluation of argu-

ment acceptability (Step 2). During this phase, the internal logical content of ar-

guments is disregarded in favor of a purely topological analysis of the argument 

graph. This abstraction introduces critical risks to the coherence of conclusions 

derived in Step 3, where logical entailments are determined based on the argu-

ments deemed acceptable. As noted by Caminada and Wu, this approach can 

result in accepted arguments whose conclusions fail to satisfy logical consistency 

or closure requirements [26, pp. 4–7]. 

For instance, abstract semantics often operate "blindly", without regard for the 

logical foundations or internal connections among arguments. Caminada and Wu 

illustrate this problem by questioning how a set of accepted arguments can en-

sure consistency of their conclusions or guarantee closure under logical entail-

ment [26, p. 5]. They argue that abstract frameworks may inadvertently admit 

conclusions that violate these principles, particularly when purely topological 

methods, such as those defining conflict-free or admissible sets, are employed 

[26, p. 6].  

Caminada and Wu’s critique extends to the uncritical reliance on abstract seman-

tics in contexts where logical and semantic integrity are paramount. They note 

that while abstract argumentation provides a useful conceptual simplification, it 

risks becoming disconnected from the real-world argumentative contexts it aims 

to model. This detachment undermines the applicability of traditional frameworks 

in domains requiring rigorous logical validation [26, p. 6]. 
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Challenges in expressiveness and applicability 

In the preceding sections, we discussed the structure and capabilities of abstract 

argumentation frameworks (AFs), along with several key extensions that intro-

duce support relations and value-based reasoning. However, traditional AFs and 

their immediate extensions often face limitations in expressiveness and applica-

bility when dealing with complex, real-world scenarios. 

One critical shortcoming lies in the inability of classical AFs to naturally represent 

varying degrees of uncertainty, priority, or evidential strength among arguments. 

The basic binary attack relation typically oversimplifies the nuanced interplay of 

competing claims, which can be more subtly captured by weighted argumenta-
tion frameworks. Weighted AFs assign numerical strengths or preferences to 

arguments, providing a more fine-grained analysis of argument acceptability. 

Such quantitative extensions allow for distinguishing between stronger and 

weaker attacks, as well as for aggregating multiple sources of support or opposi-

tion [27]. 

Another avenue of enhancement involves probabilistic argumentation frame-
works, which integrate uncertainty into the modeling process. By associating 

probabilities with arguments or attacks, these frameworks enable reasoning un-

der incomplete or ambiguous information [28]. This probabilistic dimension is par-

ticularly relevant in domains like legal reasoning, medical diagnosis, and data-

driven decision-making, where the truth value or reliability of premises is often 

not definitive. 

Temporal argumentation frameworks introduce a dynamic perspective, ac-

counting for the fact that arguments and their relationships may evolve over time. 

Such temporal extensions facilitate the modeling of scenarios where the availa-

bility or relevance of evidence fluctuates, and the strength of an argument may 

increase or decrease as new information emerges [29], [29]. This temporal di-

mension is crucial in domains like policymaking, where evolving social, economic, 

or environmental conditions continuously reshape the argumentative landscape. 

Beyond weighting, uncertainty, and temporality, evidential argumentation 
frameworks incorporate evidence management and source reliability into their 

reasoning processes. By systematically tracking the origin, credibility, and cor-

roboration of evidence, these frameworks offer a richer understanding of why 
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certain arguments prevail and how trust or skepticism in sources may shift out-

comes [30]. 

In summary, while Dung’s original framework and its immediate extensions (e.g., 

bipolar and value-based AFs) offer robust foundations for modeling argumenta-

tive interactions, these classical models fall short in terms of expressiveness and 

applicability when confronted with intricate, real-world debates. The subsequent 

waves of research—weighted, probabilistic, temporal and evidential frame-

works—address these shortcomings by introducing mechanisms that better cap-

ture the complexity, uncertainty, and dynamism of practical argumentation. These 

developments ensure that computational models remain both theoretically sound 

and operationally useful, bridging the gap between abstract theoretical constructs 

and the nuanced demands of real-world decision-making processes. 

These limitations underscore the importance of advancing argumentation graphs 

beyond their traditional design. Future developments should focus on integrating 

deeper semantic insights, potentially through hybrid models that combine 

structural graph-based representations with semantic embeddings derived from 

natural language processing techniques. Such enhancements are essential for 

paving the way for more robust and context-aware analytical tools. 

2.3 Representation Learning for Computational Argumentation  
In recent years, the study of computational argumentation has advanced 

significantly, driven by the increasing availability of large datasets, powerful 

machine learning models, and novel representation learning techniques. At the 

heart of these developments lies the need to effectively represent arguments and 

their relationships in a manner conducive to automated processing, analysis, and 

inference. Traditional frameworks, such as those introduced by Dung and its 

extensions, provide robust formal structures for capturing the interplay of 

arguments, but they often lack the flexibility and nuance needed to handle 

complex, large-scale, real-world scenarios. 

Representation learning addresses these limitations by enabling the encoding of 

arguments into machine-readable formats that preserve critical semantic, 

structural, and contextual information. Techniques such as textual embeddings, 

graph embeddings, and their integration offer innovative ways to capture the 
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richness of arguments. These representations underpin key computational tasks, 

including argument mining, stance detection, relation classification, and the 

evaluation of argument strength or persuasiveness. 

This section explores the role of representation learning in computational 

argumentation, focusing on its three primary facets: textual representations, 

which model the semantic and contextual nuances of argument components; 

graph-based representations, which encapsulate the structural relationships 

among arguments in graph form; and integrated representations, which 

combine the strengths of both textual and graph-based embeddings to provide a 

holistic view of argumentative frameworks. By analyzing these approaches, this 

section aims to highlight the transformative potential of representation learning 

for advancing argumentation research and its applications across diverse 

domains. 

2.3.1  Textual Representations 
In computational argumentation, analyzing and processing arguments effectively 

relies on transforming raw text into structured representations that encode 

semantic meaning and contextual nuance. This transformation, known as textual 
representation learning, is foundational for tasks like argument mining, stance 

detection, and sentiment analysis. These tasks often involve uncovering implicit 

logical structures and rhetorical strategies embedded in argumentative discourse. 

The Role of BERT in Textual Representation Learning 

A significant breakthrough in textual representation learning is BERT 
(Bidirectional Encoder Representations from Transformers), developed by 

Devlin et al. BERT fundamentally reshaped natural language processing (NLP) 

by introducing a model that captures deep, bidirectional representations of text. 

Unlike traditional models that process text in a unidirectional manner, BERT 

incorporates context from both preceding and succeeding words, enabling it to 

generate embeddings that reflect the full context of a word or phrase within its 

textual environment [31]. 

This capability makes BERT particularly effective for computational 

argumentation. Arguments are often composed of interdependent claims and 

counterclaims that require an understanding of how components interact 
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contextually. For instance, in a debate on environmental policy, understanding 

the nuanced relationship between the premises "reducing emissions protects 

biodiversity" and "biodiversity loss impacts human well-being" requires 

bidirectional contextual embeddings. BERT excels at capturing such 

relationships, enabling the precise identification and classification of 

argumentative structures. 

One of BERT's strengths lies in its pretraining objectives: masked language 

modeling (MLM) and next sentence prediction (NSP). These objectives prepare 

BERT to understand both local and global text coherence. MLM involves 

predicting missing words in a sentence, equipping the model to handle 

incomplete or noisy arguments often found in real-world discourse. NSP allows 

BERT to assess the coherence of two sentences, a skill that aligns well with tasks 

like detecting premise-conclusion relationships in argumentative texts [31]. 

Applications of BERT in Argumentation 

BERT has become an indispensable tool in computational argumentation, driving 

advancements in tasks that require a nuanced understanding of text. Its 

bidirectional understanding of text allows for nuanced interpretation of 

arguments, enabling applications across a wide spectrum of use cases. In 

argument mining, BERT-based systems are adept at identifying and classifying 

argumentative components such as claims and premises from diverse text 

sources. These capabilities are particularly useful in domains where arguments 

are complex and nuanced. For instance, a study demonstrated that BERT, when 

fine-tuned, outperforms traditional machine learning models like GloVe and ELMo 

in extracting argumentative components such as premises and conclusions from 

legal texts, highlighting its effectiveness in domains where argument structures 

are complex and nuanced [32]. 

BERT’s contextual embeddings are highly effective for stance detection, partic-

ularly in tasks requiring an understanding of relationships between textual com-

ponents such as headlines and article bodies. Karande et al. demonstrated this 

in a study on fake news detection, where stance detection was integrated with 

BERT-based embeddings to measure the similarity between article elements. 

This approach achieved a state-of-the-art accuracy of 95.32% by leveraging co-

sine similarity as an additional feature. The results underscore BERT’s capacity 
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to capture nuanced linguistic relationships, making it an invaluable tool for tasks 

like credibility analysis and the detection of misinformation [33]. 

BERT's contextual embeddings have significantly advanced sentiment analysis 

by effectively capturing emotional nuances within text. Alaparthi and Mishra's 

comparative study evaluated four sentiment analysis techniques – SentiWordNet, 

logistic regression, LSTM, and BERT – using a dataset of 50,000 IMDB movie 

reviews. Their findings demonstrated BERT's superior performance across accu-

racy, precision, recall, and F1 scores [34]. Similarly, Wu et al. explored BERT's 

architecture and optimization strategies in sentiment analysis, confirming its ro-

bust performance, especially after fine-tuning [35]. These studies underscore 

BERT's effectiveness in capturing emotional undertones, thereby enhancing the 

analysis of persuasive strategies in various texts.  

Implications for Argumentation Research 

The integration of BERT into computational argumentation research has 

significantly advanced the field, enabling models to process text with a level of 

depth and precision that was previously unattainable. By capturing bidirectional 

context and nuanced meaning, BERT-based systems provide insights into the 

structure, tone, and persuasiveness of arguments. These capabilities support 

applications across diverse domains, from legal analysis to educational tools and 

policy-making frameworks. As BERT continues to inform the development of 

optimized models, its influence on computational argumentation remains 

profound. 

2.3.2  Graph Representations 
Graph-based representations play a pivotal role in computational modeling, par-

ticularly for encoding complex relational data into structured forms suitable for 

machine learning and inference. By organizing entities as nodes and their inter-

relations as edges, these representations facilitate the analysis of both local and 

global dependencies within data. Such models are instrumental in diverse do-

mains, including social networks, biological systems, and knowledge graphs. 

Representation Learning with Graph Embeddings 

Graph embeddings transform graph-structured data into continuous vector 

spaces, preserving the relational and structural properties of the original graphs. 
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This transformation enables the application of standard machine learning tech-

niques to data that would otherwise require specialized algorithms. 

A significant approach in this domain involves Graph Neural Networks (GNNs), 
which employ message-passing algorithms to iteratively aggregate information 

from neighboring nodes and edges. GNNs are well-suited to capturing both local 

and global graph patterns, making them versatile tools for representation learning 

[36]. Among GNNs, Graph Convolutional Networks (GCNs) are particularly 

noteworthy for their ability to perform convolutional operations over graph struc-

tures, enabling efficient learning of node embeddings that reflect both the node's 

features and its structural context [37, pp. 5–10]. 

An important advancement within this framework is the integration of attention 

mechanisms, as seen in Graph Attention Networks (GATs). By assigning var-

ying weights to neighboring nodes during the aggregation process, GATs focus 

on the most relevant nodes and edges. This selective attention is particularly ad-

vantageous in contexts where specific relationships are more influential, such as 

hierarchical data or layered networks [38, pp. 2–5]. 

Graph embeddings are utilized in various graph analysis tasks, including node 

classification, node clustering, node recommendation, link prediction, and graph 

classification. These embeddings transform graph structures into low-dimen-

sional spaces, preserving their relational and structural properties while enabling 

efficient computation. Concrete applications include community detection in 
social networks, recommendation systems, and knowledge graph comple-
tion, where embeddings are used to infer missing links or relationships [39, Sec. 

5]. 

Integrated Representations of Textual and Graph Embeddings 

Graph embeddings effectively capture relational data structures but often fail to 

encapsulate the semantic richness of individual nodes. On the other hand, textual 

embeddings from pre-trained language models excel in providing deep semantic 

representations but lack the contextual relational depth offered by graph embed-

dings. Integrating these two paradigms yields a comprehensive representation 

that synergistically leverages both structural and semantic information. 
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One approach involves encoding textual data as node features within graph-

based models. By embedding textual attributes of nodes using pre-trained lan-

guage models, dense vector representations enriched with semantic information 

are generated. These enriched graphs are then processed using algorithms like 

GNNs or GATs, which produce representations that unify semantic and structural 

characteristics. This methodology, as exemplified by the STAGE framework, 

simplifies such integration by employing large language models to generate ro-

bust text embeddings, which are subsequently input into ensemble GNN archi-

tectures. The STAGE approach demonstrates competitive performance on node 

classification benchmarks while minimizing computational complexity and train-

ing overhead [40]. 

The combination of textual and graph embeddings is particularly impactful for 

complex tasks requiring both content understanding and relational reasoning. 

Models like GraphFormers exemplify this synergy by iteratively fusing textual 

and graph-based information, enhancing representation quality while maintaining 

computational efficiency [14]. 

Implications for Computational Argumentation 

The integration of textual and graph embeddings offers a nuanced way to com-

bine semantic richness with structural insights, facilitating advancements in com-

putational argumentation. A thorough examination of the provided sources high-

lights significant contributions to this interdisciplinary domain. 

Argument Quality Assessment 

Marro et al. introduce a hybrid neural framework explicitly combining textual and 

graph embeddings for argument quality assessment. Their approach uses graph 

embeddings to capture the relational context among arguments and BERT-based 

textual embeddings to model the linguistic properties of natural language argu-

ments. This methodology allows for the evaluation of quality dimensions such as 

cogency, rhetoric, and reasonableness in a corpus of student persuasive essays. 

The results indicate that this integrated model significantly outperforms state-of-

the-art baselines, underscoring the value of combining textual and structural fea-

tures in tasks like argument evaluation [15]. 

Debate Evaluation and Stance Prediction 
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Ruiz-Dolz et al. propose a hybrid method for evaluating complete argumentative 

debates by integrating formal argumentation theory with NLP techniques. Alt-

hough this work does not directly combine textual embeddings with graph repre-

sentations, it employs Transformer-based embeddings to model the natural lan-

guage properties of arguments alongside graph-based computations of argument 

acceptability. This combination enhances the evaluation of debates, allowing the 

model to predict the winning stance with high accuracy by leveraging both logical 

and linguistic insights [41]. 

Argument Graph Construction 

Lenz et al. present a modular pipeline for transforming natural language texts into 

argument graphs. Their work emphasizes the extraction of Argumentative Dis-

course Units (ADUs) and the prediction of relations such as support and attack 

to construct structured argument graphs. Although textual embeddings are not 

explicitly integrated, the modularity of the pipeline allows for potential enhance-

ments using pre-trained language models to enrich the semantic representation 

of nodes in the graph [42]. 

The reviewed studies demonstrate that the integration of textual and graph em-

beddings is not only feasible but also advantageous for computational argumen-

tation. While some works explicitly adopt hybrid methods, others provide founda-

tional insights that can be extended with integrated approaches. Future research 

should focus on expanding these hybrid methodologies across diverse argumen-

tation tasks, with an emphasis on scalability and interpretability. 

2.3.3  Conclusion: Advancing Computational Argumentation through 
Representation Learning 

Representation learning has significantly advanced the field of computational ar-

gumentation, offering powerful tools to analyze and model arguments in complex, 

large-scale, real-world contexts. Textual embeddings, exemplified by models 

such as BERT, have proven indispensable in capturing the semantic richness 

and contextual nuances of argumentative components, facilitating applications 

like argument mining, stance detection, and quality assessment. On the other 

hand, graph embeddings provide a robust means of encapsulating the structural 

relationships among arguments, enabling the analysis of interconnected argu-

mentative structures. 
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The integration of textual and graph embeddings represents a promising avenue, 

offering a holistic approach to computational argumentation. By leveraging the 

complementary strengths of semantic and structural representations, hybrid 

methods have demonstrated their efficacy in tasks such as argument quality as-

sessment, debate evaluation, and the construction of argument graphs. These 

studies highlight the potential of integrated approaches to bridge the gap between 

formal argumentation theories and practical applications in diverse domains. 

As computational argumentation continues to evolve, future research should pri-

oritize expanding the use of hybrid methodologies, refining their scalability, and 

improving interpretability. This focus will ensure that representation learning re-

mains a cornerstone of computational argumentation, driving its applicability to 

increasingly complex and impactful real-world scenarios. 

2.4 Gaps in the Literature and Justification for the Present Study  
The evolution of computational argumentation has provided powerful tools for 

analyzing discourse, yet significant gaps remain in addressing the full complexity 

of real-world argumentative interactions. Traditional models often focus on either 

the structural relationships between arguments or their semantic content but 

rarely integrate both dimensions comprehensively. This chapter synthesizes the 

limitations identified in existing research and establishes the motivation for the 

present study. By bridging structural and semantic insights through the integra-

tion of graph and textual embeddings, this thesis explores a novel avenue to ar-

gumentation modeling. The chapter also highlights the broader significance of 

this work, positioning it within the field and outlining its potential applications for 

advancing discourse analysis in diverse contexts. 

2.4.1  Summary of Key Limitations in Existing Research 
As detailed in the preceding sections, traditional argumentation frameworks — 

even when extended with support relations or value-based considerations — of-

ten rely on highly abstracted structural models. While these models provide val-

uable insights into attack, defense, and preference dynamics, they nonetheless 

exhibit critical shortcomings in capturing the full complexity of real-world dis-

course. Specifically, they frequently neglect or oversimplify. 
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Semantic Richness 

Abstract semantics largely ignore the nuanced linguistic features of arguments, 

making it difficult to represent the emotional tone, rhetorical strategies, implicit 

premises, and domain-specific contextual cues that can profoundly affect how 

arguments are perceived and evaluated. 

Contextual and Pragmatic Dimensions 

Many computational models omit the interactive, evolving nature of discourse, 

overlooking how arguments can shift in tone, content, or relevance over time. 

This limitation is particularly acute in digital settings, where rapid exchanges and 

constant feedback loops shape argumentative trajectories. 

Integrated Representations - Contextual and Pragmatic Dimensions 

While advances in graph embeddings capture structural information and lan-

guage models like BERT excel at revealing semantic contexts, few studies com-

bine these two dimensions in a unified model. As a result, opportunities for more 

robust and holistic discourse analysis remain largely untapped. 

Scalability and Practical Utility 

Existing methods that do integrate semantic and structural insights often involve 

highly specialized or computationally expensive approaches, limiting their feasi-

bility for large-scale digital discourse analysis or real-time applications (e.g., au-

tomated debate moderation, policy-making platforms). 

These gaps underscore the need for a more comprehensive modeling framework 

that can accommodate the complexities of digital discourse without sacrificing the 

analytical power of formal argumentation or the semantic depth afforded by mod-

ern language models. 

2.4.2  Positioning the Current Research 
This thesis is positioned at the intersection of argumentation theory, computa-

tional linguistics, and representation learning. By integrating graph embeddings 

with advanced textual embeddings, the proposed model aims to provide an en-

riched argumentation graph that captures both the relational structure of argu-

ments and their semantic content. Building on frameworks such as Dung’s 
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abstract argumentation [22] and transformer-based language models (e.g., BERT 

[31]), this research specifically addresses the limitations outlined above. 

Semantic–Structural Fusion 

Rather than treating semantic analysis as a post hoc supplement, this work 

weaves semantic embeddings directly into graph construction, enabling a more 

cohesive understanding of argumentation that accounts for both logical interac-

tions and the subtleties of language. 

Enhanced Nuance 

The model is designed to accommodate implicit premises, emotional appeal, and 

rhetorical devices, moving beyond the binary attack-and-support paradigm to in-

corporate richer modes of argumentative engagement. 

Scalable Methodology 

By leveraging established machine learning pipelines and well-documented 

frameworks (e.g., GNN architectures), the proposed approach aims to be both 

robust and efficient. This emphasis on scalability is pivotal for handling large, dy-

namic corpora typical of modern digital platforms. 

2.4.3  Relevance and Contribution 
By bridging formal argumentation structures with sophisticated semantic repre-

sentations, this thesis endeavors to advance computational discourse analysis in 

several keyways. 

Potential Methodological Innovation 

Introducing an integrated framework that unifies structural and semantic insights 

provides a versatile tool for modeling, visualizing, and interpreting complex argu-

mentative interactions. This hybrid perspective has the potential to offer more 

fine-grained analyses and to detect hidden or implicit argumentative strategies. 

Practical Impact 

From debate evaluation to policymaking and decision-support systems, a richer 

understanding of how arguments are interlinked, supported, and contested can 

facilitate more informed and collaborative public discourse. The proposed model 
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could underpin applications that automatically highlight contradictory viewpoints, 

expose logical gaps, or summarize sprawling debates. 

Future Extensions 

While the immediate focus is on demonstrating the model’s efficacy using a small 

dataset, the broader implications extend to diverse domains where robust argu-

ment analysis is critical — including legal, political, and educational contexts. The 

groundwork established here paves the way for deeper explorations into real-

time conflict detection, sentiment-aware argument mapping, and retrieval-aug-

mented argument generation. 

In sum, the thesis seeks to experiment within underexplored areas in argumen-

tation research with the goal of potentially developing a richer, more holistic 

model of how we argue and deliberate in debates. 
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3 Research Methodology 

3.1 Research Design 
This study aims to evaluate and compare the effectiveness of different embed-

ding spaces—semantic, topological, and aggregated semantics—in representing 

argumentative discourse. The methodology focuses on embedding generation, 

visualization, clustering, and comparative analysis to assess their individual and 

combined capabilities. 

3.2 Graph Schema 
This research adopts a refined version of Bipolar Argumentation Frameworks to 

model argumentative discourse, integrating key advancements inspired by Toul-

min's model. These refinements address the abstract semantic limitations ob-

served in traditional frameworks. By incorporating distinct node types—such as 

Premises, Claims, Questions, and Authors—the schema delivers a nuanced and 

comprehensive representation of argumentative interactions, bridging gaps in 

logical structure and contextual subtleties. 

3.2.1 Types of Nodes 

1. Question: Questions function as critical elements within the discourse, 

framing the central topics or issues under debate. These nodes are catego-

rized into: 

• Initiating Questions: Standalone, thematic entry points that do not 

target specific elements, enabling the exploration of broad dimen-

sions within the discourse. 

• Follow-up Questions: Targeted inquiries directed at specific Claims 

or Premises, fostering detailed scrutiny of individual argumentative 

components. 

2. Claim: Claims represent the argumentative positions or assertions pre-

sented in the discourse. These nodes may either support or oppose other 

Claims or Premises, forming the backbone of the argumentation structure. 

3. Premise: Premises provide foundational evidence or reasoning that sub-

stantiates Claims. They supply the logical or empirical underpinnings nec-

essary for validating the discourse. 
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4. Author: Authors identify the entities (individuals or groups) responsible for 

generating Questions, Claims, or Premises. This node type introduces an 

additional layer of contextual depth, allowing for a detailed analysis of au-

thorship’s influence on the discourse. 

3.2.2  Types of Relationships 

1. Questions: A directed relationship from a Question node to a Claim or 

Premise node, representing the act of inquiry and explicitly linking ques-

tions to their targets. 

2. Answers: A directed relationship from a Claim or Premise node to a Ques-

tion node, clarifying the connections between argumentative responses and 

their corresponding inquiries. 

3. Support: A directed relationship indicating reinforcement or agreement be-

tween nodes, such as a Premise supporting a Claim. This relationship is 

pivotal for modeling constructive argumentative dynamics. 

4. Attack: A directed relationship denoting contradiction or opposition be-

tween nodes, such as a Claim refuting another Claim or Premise. This rela-

tionship captures adversarial dynamics critical to argumentative discourse. 

5. Authored_by: A directed relationship linking argumentative nodes (e.g., 

Questions, Claims, Premises) to their respective Author nodes. This con-

nection enhances accountability and provides insights into the origins of ar-

guments. 

3.2.3  Graph Representation 
The enhanced framework seamlessly integrates semantic and structural ele-

ments, enabling advanced analysis and visualization of argumentative discourse. 

By incorporating specialized node and relationship types, the schema captures 

the multidimensional nature of argumentation. This dual-layered approach facili-

tates precise modeling of both logical coherence and contextual nuances, 

thereby enhancing the analytical depth and practical applicability of the frame-

work. 

3.2.4  Future Considerations 
Future refinements of this schema could incorporate additional elements to aug-

ment its representational capacity. For example: 
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• Evidence Nodes: Introducing nodes explicitly representing factual back-

ing would enhance the robustness of argumentation. 

• Nuanced Relationships: Expanding the range of relationship types, such 

as conditional dependencies (e.g., arguments valid only in specific con-

texts), would allow for more sophisticated modeling of interdependencies 

and argumentative strategies. 

• Weighted Relationships: Assigning weights to relationships could reflect 

the relative strength or significance of connections, facilitating a more 

granular analysis of argument dynamics. 

These advancements would broaden the schema’s utility, potentially enabling its 

application in increasingly complex discourse environments and fostering its rel-

evance in both theoretical research and practical implementations. 

3.3 Dataset 
This study uses a synthetic dataset generated by a Large Language Model 

(LLM) to ensure flexibility and control over the structure and characteristics of 

argumentative discourse. The dataset is designed to simulate real-world debate 

scenarios while maintaining consistency in annotations and relationships to facil-

itate robust experimentation. It  

3.3.1  Dataset Characteristics 
The dataset consists of debates generated with annotated argumentative com-

ponents, including claims, premises, and questions, providing a structured foun-

dation for analysis. Relationships between these components are explicitly anno-

tated with support and attack edges, enabling the construction of detailed and 

informative argumentation graphs. As a synthetic dataset, it offers the flexibility 

to tailor argument structures precisely, accommodating scenarios of varying com-

plexity to meet the specific needs of the study. 

The dataset centers around a debate on Universal Basic Income (UBI), with 

three fictional participants representing pro, contra, and moderate positions on 

the topic. It comprises approximately 100 argumentative nodes, each represent-

ing a distinct argument, and the relationships between them, which illustrate the 

interplay of supporting and opposing ideas. This structure allows for a nuanced 
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exploration of the debate, capturing the dynamics of argumentation and the con-

nections between differing perspectives.  

3.3.2  Dataset Generation Process 

Prompt Design 

The dataset is generated using a carefully crafted prompt for a Large Language 

Model (LLM) to simulate argumentative discourse. The prompt is designed to 

elicit a range of argumentative components (questions, claims, premises) and 

relationships (question, answer, support, attack) to ensure diversity and rele-

vance. Few-shot prompting is utilized by providing the LLM with multiple anno-

tated examples of argumentative structures within the prompt. These examples 

illustrate the desired components (e.g., claim, premise) and relationships (e.g., 

support, attack), improving the quality and consistency of the generated outputs. 

The full prompt can be found on GitHub [43]. 

Generation Procedure 

A specialized Large Language Model (LLM) from OpenAI, known as GPT-o1 and 

designed for reasoning tasks, is used to generate the argumentative text based 

on carefully designed prompts. To ensure sufficient variability and richness in the 

argument structures, multiple rounds of generation are conducted. After genera-

tion, the outputs are meticulously reviewed to maintain the overall quality and 

relevance of the dataset. 

3.3.3  Preprocessing 
Preprocessing plays a crucial role in transforming raw data into a structured for-

mat suitable for analysis within this study. This step involves multiple processes 

to ensure the dataset is correctly represented as an argumentation graph, ena-

bling the seamless application of embedding techniques and subsequent evalu-

ations. 

Graph Construction 

The construction of the argumentation graph begins with importing the synthetic 

dataset, which is provided in a structured CSV format. This dataset consists of 

two primary files: nodes.csv and edges.csv. These files contain essential infor-

mation about the argumentative discourse units (ADUs) and their 
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interconnections, respectively. The preprocessing pipeline follows a systematic 

approach to transform these files into a usable graph format: 

1. Node Representation: 

• Each row in the nodes.csv file corresponds to a specific ADU, includ-

ing elements such as claims, premises, questions, and authors. 

• Nodes are created for every unique ADU, ensuring that the graph 

captures all relevant argumentative components. 

2. Edge Connectivity: 

• Relationships between nodes, such as "support" and "attack," are de-

rived from the edges.csv file. 

• Each row in this file specifies a directed edge between two nodes, defin-

ing the nature of their relationship. 

Tools and Libraries 

Preprocessing relies on state-of-the-art graph tools, such as neo4j, to construct 

and manipulate the graph. These tools provide robust support for importing CSV 

data, creating graph structures, and encoding additional metadata as node and 

edge attributes. By leveraging these libraries, the preprocessing phase ensures 

consistency and scalability. 

Output 

The final output of the preprocessing stage is a fully constructed argumentation 

graph where: 

• Nodes represent ADUs (e.g., claims, premises, questions, authors). 

• Edges encapsulate the relationships between these nodes (e.g., support, 

attack). 

• Additional metadata, such as authorship and node attributes, is integrated 

into the graph. 

This graph serves as the foundation for generating embeddings and conducting 

comparative analyses, bridging the gap between raw data and meaningful in-

sights. 



Research Methodology 48 

3.4 Embedding Generation 
The generation of embeddings forms a critical component of this research, ena-

bling the comparative analysis of semantic, structural, and integrated embedding 

spaces. This section outlines the methods and rationale behind each embedding 

approach, emphasizing the objectives, processes, and implications for modeling 

argumentative discourse. 

3.4.1 Semantic Embeddings 
Semantic embeddings capture the linguistic and contextual nuances of argu-

ments, providing a dense vector representation of textual content. Capturing 

these nuances is crucial for argumentative discourse analysis as it enables a 

deeper understanding of the underlying intent, meaning, and rhetorical strategies 

employed in arguments. By preserving context and subtle linguistic variations, 

semantic embeddings help in accurately representing the interplay of ideas, 

which is essential for modeling complex argumentative interactions. 

Choice of Model 

Pre-trained models, such as all-mpnet-base-v2, are utilized to generate these 

embeddings due to their specialization in sentence-level representations. Unlike 

traditional models such as BERT, all-mpnet-base-v2 offers enhanced perfor-

mance for sentence embeddings, making it particularly suitable for capturing the 

semantics of argumentative discourse components. 

Sentence-level embeddings excel in maintaining the contextual coherence of en-

tire statements, a critical factor for argumentative discourse analysis, where the 

focus is on the intent and meaning of full arguments rather than individual words. 

Conversely, token-level embeddings, like those from BERT, provide finer granu-

larity, which is beneficial for tasks that require detailed word-level interpretation. 

However, this granularity often necessitates additional aggregation steps to de-

rive sentence-level meaning, which can introduce noise and reduce consistency. 

As a result, all-mpnet-base-v2 is preferred for its ability to directly generate co-

herent, high-quality sentence representations with minimal preprocessing. 

This model is specifically chosen for its ability to maintain high accuracy across 

diverse datasets, outperforming other sentence-level models like Universal Sen-

tence Encoder (USE) or Sentence-BERT in capturing fine-grained contextual 
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meaning. Additionally, all-mpnet-base-v2 integrates masked language modeling 

and permuted language modeling techniques, which enable a deeper under-

standing of sentence semantics and contextual relationships. These capabilities 

make it particularly well-suited for tasks like argumentative discourse analysis, 

where capturing nuanced interactions between ideas is critical. 

Embedding Process 

The embedding process involves generating 768-dimensional vectors for each 

argumentative node (e.g., claims, premises, and questions). These embeddings 

encapsulate the semantic content of the nodes, providing a rich representation 

that facilitates downstream analyses. 

To ensure uniformity and improve the comparability of results, the generated em-

beddings are normalized. This process involves scaling the embeddings to have 

unit norm, which ensures that all vectors are represented in the same magnitude 

range. By normalizing, the model prevents certain nodes from disproportionately 

influencing analysis due to differences in vector magnitude, thereby enabling a 

fair comparison across all nodes in the embedding space. This approach ensures 

that the semantic characteristics of each node are accurately and consistently 

represented within the embedding space. 

3.4.2  Structural Embeddings 
Structural embeddings focus on encoding the relational and topological proper-

ties of the argumentation graph. This study employs Fast Random Projection 
(FastRN) embeddings to generate vector representations based solely on the 

graph’s structural attributes—nodes and edges—without incorporating node-spe-

cific features. By isolating these structural aspects, the embeddings provide a 

clear and unbiased representation of the argumentation framework’s architec-

ture. This approach enables a deeper exploration of its organizational patterns 

and topological characteristics, highlighting key structural dynamics effectively. 

The emphasis on structure rather than content makes this approach invaluable 

for identifying key relational dynamics within the argumentative discourse. 

Choice of Method 

FastRN is chosen for its efficiency and effectiveness in capturing graph topology. 

At its core, FastRN operates by initializing each node in the graph with a random 
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vector, which is then iteratively refined based on the node's connections within 

the graph. During this refinement process, each node updates its embedding by 

aggregating information from its neighbors' embeddings, weighted by their re-

spective degrees. This iterative propagation process captures the local and 

global structural context of each node, ensuring that nodes with similar roles or 

connectivity patterns in the graph converge to similar embeddings.  

Unlike alternative methods that often require extensive computational resources 

or additional data features, FastRN provides a streamlined solution focused 

purely on structural properties. The method computes embeddings by analyzing 

the connections and roles of nodes within the graph, which helps highlight rela-

tionships such as hubs, central nodes, or hierarchical positioning. This choice 

ensures scalability for large graphs while maintaining the precision necessary for 

accurate analysis. Furthermore, its adaptability allows the method to be applied 

to diverse graph structures, making it a robust tool for argumentation analysis. 

Nodes and Relationships 

Nodes included in this process are claims, premises, authors, and questions. 

Each node type represents a distinct argumentative component, contributing 

unique insights into the discourse structure. Relationships between these nodes 

are categorized as follows: 

• Attack and Support: These are treated as undirected edges, capturing 

the essence of argumentative connections that define agreements or con-

tradictions. 

• Questions and Answers: These relationships are similarly treated as un-

directed edges, providing a generalized view of the inquiry-response dy-

namics inherent in the graph. 

• Authored_by: This relationship, linking argumentative nodes to their re-

spective authors, is reversed in direction to mitigate its dominance in the 

graph. This reversal ensures that no single relationship type disproportion-

ately influences the overall embedding representation, thereby preserving 

a balanced view of the structural dynamics. 

The inclusion of these nodes and relationships ensures that the graph compre-

hensively captures the complexity of argumentative interactions. By treating 



Research Methodology 51 

certain edges as undirected, the model abstracts away unnecessary directional 

biases, allowing the relationships to be analyzed without assuming an inherent 

hierarchy or causality. This decision is particularly impactful in contexts where the 

directionality of relationships may obscure broader patterns of interaction, such 

as reciprocal argumentation or mutual support. By simplifying these edges, the 

analysis emphasizes the overall connectivity and clustering within the graph, 

leading to a more holistic understanding of its structural properties. 

Hyperparameters 

Key hyperparameters for FastRN include an embedding dimension of 768 and a 

normalization strength of 0.5. The embedding dimension defines the vector size 

used to represent each node, balancing the need for expressive power with com-

putational efficiency. The normalization strength parameter scales the initial ran-

dom vector assigned to each node by its degree raised to the power of normali-

zation strength. This scaling process ensures that nodes with higher connectivity 

are appropriately weighted, reflecting their centrality or importance within the 

graph. Additionally, this approach prevents overemphasis on isolated or low-de-

gree nodes, fostering a balanced representation of the entire graph’s topology. 

These hyperparameter settings were chosen after iterative experimentation to 

optimize the model’s performance while maintaining computational feasibility. 

Implications 

Structural embeddings are crucial for understanding the relational dynamics 

within the argumentation graph. By relying solely on topological properties, these 

embeddings reveal the organizational structure and interactions between argu-

mentative components. This approach allows researchers to uncover patterns 

such as clustering, node centrality, and relational symmetry, which are not imme-

diately evident from the raw data. 

Moreover, structural embeddings provide a foundation for cross-comparative 

analyses. By abstracting away semantic content, they enable an unbiased exam-

ination of how argumentative structures evolve across different contexts or da-

tasets. This abstraction is particularly useful for tasks such as identifying common 

argumentation strategies, detecting structural anomalies, or assessing the ro-

bustness of argumentative frameworks in diverse discourse environments. 
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Overall, the reliance on purely structural features ensures a focused and rigorous 

analysis, offering insights that complement those derived from semantic embed-

dings. 

3.4.3  Aggregated Semantic Embeddings 
Aggregated semantic embeddings offer a powerful means of capturing the nu-

anced interplay between arguments, questions, and premises in argumentative 

discourse. By leveraging GraphSAGE, this approach enriches each node’s rep-

resentation with contextual information from its local neighborhood, allowing 

the model to incorporate semantic nuances from surrounding nodes. This en-

hancement captures inter-node relationships, emphasizing how individual argu-

ments relate to their broader discourse context, thus improving the overall repre-

sentation quality. This method emphasizes the importance of both individual node 

features and their connections within the discourse graph, creating embeddings 

that are well-suited for sophisticated analyses of argumentation patterns and re-

lationships. By leveraging the semantic context captured by node features, this 

method enriches each node’s embedding with information from its neighbors, en-

abling a more nuanced representation of the argumentative discourse while pre-

serving its semantic integrity. This approach ensures that the embeddings not 

only represent the individual arguments but also encapsulate their interaction 

within the discourse network, creating a robust and dynamic model suitable for a 

range of analytical tasks. 

Choice of Method 

GraphSAGE, which stands for Graph Sample and Aggregate, is employed as 

the aggregation method due to its ability to generate node representations by 

sampling and aggregating information from neighboring nodes. Under the hood, 

GraphSAGE operates by iteratively sampling a fixed number of neighbors for 

each node and applying an aggregation function, such as mean, max-pooling, or 

an LSTM-based aggregator, to combine their features. The resulting aggregated 

features are then concatenated with the node’s own features and passed through 

a neural network to generate an updated embedding. This process is repeated 

over multiple layers, allowing the model to incorporate information from increas-

ingly distant neighbors in the graph, capturing both local and extended contexts 

effectively. This capability is particularly effective for argumentative graphs, 
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where the semantic connections between arguments, questions, and premises 

are crucial. Furthermore, GraphSAGE’s flexibility allows for iterative refinement 

of embeddings, ensuring that each representation captures both immediate and 

extended contexts within the graph. 

By aggregating information from sampled neighbors, GraphSAGE mitigates the 

computational overhead associated with processing entire neighborhoods, mak-

ing it scalable for larger datasets. Additionally, its aggregation strategies, such as 

mean or pooling functions, provide mechanisms to balance the influence of 

densely and sparsely connected nodes, resulting in embeddings that reflect the 

unique semantic properties of each argument while integrating the broader dis-

course dynamics. 

Input Features and Relationships 

Input Features 

To ensure that each node’s embedding captures relevant contextual semantic 

information, preprocessed semantic embeddings derived from PCA-reduced all-

mpnet-base-v2 vectors are utilized. These embeddings encapsulate the critical 

semantic properties of claims, premises, and questions. Principal Component 

Analysis (PCA) transforms the original high-dimensional features into orthogonal 

components ranked by variance, reducing data complexity while retaining the 

most informative aspects. This approach minimizes computational resource re-

quirements, such as memory and runtime, while enhancing robustness by focus-

ing on essential features and preventing overfitting during training. However, this 

dimensionality reduction may involve trade-offs, such as the potential removal of 

less prominent features that could carry nuanced semantic information in certain 

contexts. 

Relationships 

Relationships in the graph are configured to ensure that meaningful connections 

between nodes are captured: 

• Attack and Support: Maintained in their natural orientation to preserve 

the inherent argumentative dynamics. These relationships emphasize the 

adversarial and supportive interactions that form the backbone of argu-

mentative discourse. 
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• Questions and Answers: Treated as undirected edges to generalize in-

quiry-response dynamics. This configuration abstracts the directional con-

straints, focusing on the semantic exchange between nodes rather than 

the explicit flow of inquiry and response. 

By carefully curating input features and relationship orientations, the model en-

sures that both the semantic content and the relational structure of the discourse 

are effectively represented, enabling deeper and more accurate analyses. 

Training and Hyperparameters 

Key hyperparameters for the GraphSAGE model include: 

• Embedding Dimension: 768, matching the dimensionality of the seman-

tic embeddings for consistency. This alignment ensures that downstream 

analyses can seamlessly integrate embeddings from different layers. 

• Sample Sizes: [10, 5], representing the number of neighbors sampled at 

each layer to balance depth and breadth in the graph. Sampling reduces 

computational complexity while maintaining sufficient context to enrich 

node embeddings. 

• Learning Rate: 0.01, optimized for stable convergence. The chosen rate 

prevents abrupt changes in weights while ensuring steady progress during 

training. 

• Epochs: 40, providing sufficient iterations for the model to learn meaning-

ful embeddings. This balance avoids underfitting while preventing overfit-

ting. 

• Aggregator: “Mean”, chosen to prevent over-smoothing and dimensional-

ity collapse, ensuring that each node retains unique semantic features. 

This strategy maintains the individuality of nodes while integrating infor-

mation from their neighborhoods. 

Implications 

Aggregating semantic embeddings using GraphSAGE enhances the representa-

tional power of the model by incorporating contextual information from neighbor-

ing nodes. This method preserves the semantic richness of individual arguments 

while contextualizing them within the discourse network. The result is a set of 
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embeddings that capture not only the content of individual nodes but also the 

broader semantic relationships within the graph. By incorporating neighbor infor-

mation, these embeddings reveal intricate patterns of argumentation, such as re-

curring themes, implicit dependencies, and contextual nuances. 

This approach facilitates tasks such as identifying argumentation strategies, as-

sessing discourse coherence, and analyzing the interplay between different ar-

gumentative roles. For instance, by examining clusters of nodes with similar em-

beddings, researchers can uncover thematic groupings or argumentative align-

ments that provide insights into the discourse’s structure and intent. 

By focusing exclusively on semantic aggregation, the embeddings provide a ro-

bust framework for evaluating the semantic structure of discourse while avoiding 

the complexities of integrating structural embeddings. This approach also en-

sures scalability, as the reliance on preprocessed semantic features and 

GraphSAGE’s efficient sampling mechanisms allow the model to handle larger 

argumentative datasets. Consequently, the aggregated embeddings serve as a 

versatile tool for both theoretical research and practical applications, bridging the 

gap between detailed semantic analysis and holistic discourse modeling. 

3.5 Comparison of Embedding Spaces 
This section conducts a preliminary evaluation of semantic, structural, and aggre-

gated semantic embedding spaces to explore their respective capabilities in rep-

resenting argumentative discourse. By combining visualization, clustering evalu-

ation, and quantitative metrics, the analysis ensures that both qualitative and 

quantitative dimensions of the embeddings are examined. Visualization reveals 

clustering tendencies and thematic patterns, clustering evaluation quantifies 

group cohesion and separation, and quantitative metrics provide precise meas-

urements of embedding performance. This combination is crucial for capturing 

the diverse aspects of how embedding spaces represent argumentative dis-

course. 

3.5.1  Visualization 
Visualization serves as an indispensable tool for uncovering the latent structures 

within embedding spaces, providing intuitive insights into clustering patterns and 

distributional properties of argumentative components. This study utilizes PCA 
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and t-Distributed Stochastic Neighbor Embedding (t-SNE) to project high-di-

mensional embeddings into a more interpretable three-dimensional space. 

Process 

Initially, PCA is employed to reduce noise and enhance computational efficiency 

by retaining only those components that collectively explain 99% of the data var-

iance. This threshold balances the need for simplification with the preservation of 

meaningful information. By focusing on components that capture the majority of 

the variance, PCA ensures that the core patterns and structures within the data 

are retained, while irrelevant or redundant variations are discarded. This ap-

proach enables downstream analyses to operate efficiently without compromising 

the integrity of the original data. This step ensures that the essential characteris-

tics of the data are preserved while discarding redundant information.  

Subsequently, t-SNE is applied to map the embeddings into a three-dimensional 

space. t-SNE operates by constructing pairwise probability distributions for points 

in the high-dimensional space, which reflect their similarities, and then optimizing 

a corresponding distribution in the lower-dimensional space to minimize diver-

gence. By focusing on local neighborhoods, t-SNE preserves small-scale rela-

tionships while sacrificing some global structure, meaning that while local clusters 

of similar points are well represented, the overall spatial arrangement of distant 

clusters may not reflect their true global relationships. For example, in a dataset 

where distant groups represent separate thematic topics, t-SNE may emphasize 

internal cohesion within each topic but distort their relative positions in the overall 

visualization. This method effectively highlights subtle clustering tendencies and 

reveals intricate patterns in the embeddings.  

The resulting visualizations are scatterplots where nodes are color-coded based 

on argumentative roles (e.g., claims, premises), authorship, or debate sections 

to emphasize thematic patterns. 

Configuration Details 

Semantic Embeddings: PCA preprocessing is applied to the embeddings be-

fore t-SNE. The t-SNE parameters include a perplexity of 15, a maximum of 

100,000 iterations, and a cosine similarity metric. Author-related metadata is 

excluded, allowing the analysis to focus exclusively on semantic content. 
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Structural Embeddings: Similarly, PCA preprocessing is used before t-SNE ap-

plication. Parameters remain consistent (perplexity: 15, iterations: 100,000), but 

the Euclidean distance metric is employed. Author information is included to 

capture relational dynamics effectively. 

Aggregated Semantic Embeddings: Unlike the other two spaces, PCA prepro-

cessing is omitted to preserve the complete semantic richness of the embed-

dings. t-SNE parameters include a perplexity of 20, a maximum of 100,000 itera-

tions, and a cosine similarity metric. Author information is excluded to maintain 

focus on aggregated semantic properties. 

Parameter Implications 

Perplexity: This parameter influences how t-SNE balances local and global as-

pects of the data. A perplexity of 15 reflects a focus on preserving local neighbor-

hoods, ideal for datasets where local clustering is critical. Aggregated semantic 

embeddings, with a perplexity of 20, capture slightly broader contexts. 

Distance Metric: The choice of cosine similarity for semantic and aggregated 

embeddings emphasizes the directional relationship between vectors, which is 

crucial for capturing semantic nuances. Conversely, Euclidean distance for 

structural embeddings reflects spatial relationships, aligning with the graph topol-

ogy. 

Implications 

The scatterplots derived from these visualizations are valuable for gaining a pre-

liminary understanding of how well each embedding space captures the semantic 

and structural characteristics of the discourse. By observing the distribution and 

clustering of nodes based on argumentative roles and thematic contexts, re-

searchers can identify initial strengths and limitations of each embedding space. 

Notable differences in clustering patterns across semantic, structural, and aggre-

gated semantic embeddings provide insights into their potential efficacy in mod-

eling argumentative interactions. 

3.5.2  Clustering Analysis 
Clustering analysis provides a quantitative complement to visualization, ena-

bling an initial evaluation of grouping quality within each embedding space. This 
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study employs k-means clustering, a robust unsupervised learning method, to 

partition the nodes and assess their separation into meaningful clusters. 

Process 

The k-means algorithm partitions data into a pre-defined number of clusters by 

iteratively minimizing the variance within each cluster. The process begins by in-

itializing cluster centroids, often chosen randomly, and assigning data points to 

the nearest centroid based on a specified distance metric. The centroids are then 

updated as the mean of all points assigned to their cluster. This process repeats 

until convergence, where data point assignments stabilize, or a maximum num-

ber of iterations is reached. K-means effectively groups nodes by minimizing in-

tra-cluster variance while maximizing inter-cluster separation. 

Understanding Silhouette Score 

The Silhouette Score is a quantitative metric used to assess the quality of clus-

tering. It measures how similar a data point is to its assigned cluster compared to 

other clusters. For each data point, the Silhouette Score is calculated as the dif-

ference between the mean distance to points in the same cluster (cohesion) and 

the mean distance to points in the nearest neighboring cluster (separation), nor-

malized by the maximum of the two values.  

Scores range from -1 to 1, where higher values indicate well-defined clusters with 

high cohesion and separation. A score near 0 suggests overlapping clusters, and 

negative scores imply misclassified points. For example, a Silhouette Score of 

0.8 might indicate that most data points are clearly associated with their respec-

tive clusters, with minimal overlap between clusters. Conversely, a score of -0.2 

could suggest significant misclassification, where points are assigned to clusters 

they are not closely related to, reflecting poor clustering quality.  

This metric is particularly valuable for evaluating how effectively different embed-

ding spaces distinguish between semantic differences. 

Comparative Insights 

The analysis focuses on comparing the grouping quality within semantic and 

aggregated semantic embeddings, assessing their relative strengths in capturing 

argumentative nuances. By examining Silhouette Scores across varying cluster 
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configurations, researchers can identify the optimal cluster count and evaluate 

which embedding type achieves superior separation of argumentative compo-

nents. This quantitative approach provides a starting point for assessing the rep-

resentational power and utility of each embedding space. 

3.5.3 Evaluation Metrics 
To ensure a balanced comparison, the analysis incorporates both qualitative and 

quantitative evaluation metrics. These complementary approaches provide a 

foundational understanding of the embedding spaces’ effectiveness. 

Silhouette Score: This metric quantitatively assesses clustering quality, offer-

ing insights into the degree of separation and cohesiveness among clusters. By 

comparing Silhouette Scores across different embedding spaces, researchers 

can identify initial trends in their relative efficacy in modeling argumentative struc-

tures. 

Visual Insights: Observational patterns derived from scatterplots provide quali-
tative insights that numerical metrics may overlook. For instance, scatterplots 

can reveal tightly clustered groups of nodes corresponding to specific argumen-

tative roles, such as claims or premises, or expose anomalies like outlier nodes 

that do not fit into expected clusters. These visual cues help identify trends or 

inconsistencies in the data that might not be evident through metrics alone, such 

as thematic overlaps or hierarchical relationships within the argumentation struc-

ture. These observations help reveal thematic groupings, latent relationships, and 

clustering tendencies within the data, adding depth to the analysis. 

Synthesis 

The combination of Silhouette Scores and visual insights ensures a preliminary 

evaluation of the embedding spaces. While the Silhouette Score provides a quan-

titative measure, visual analysis captures contextual nuances and practical impli-

cations. Together, these metrics offer an exploratory understanding of how each 

embedding space represents the complexity of argumentative discourse, setting 

the stage for further validation and refinement. 
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3.6 Code and Reproducibility 
Ensuring the reproducibility of experiments and results is a cornerstone of rigor-

ous scientific research. This section outlines the tools, workflows, and best prac-

tices employed in this study to facilitate reproducibility and provide transparency 

in the analysis of embedding spaces and argumentative discourse. 

3.6.1  Project Workflow 
The project follows a modular and well-documented workflow to ensure that each 

step can be replicated independently. Moreover, the complete workflow can be 

executed as a single data pipeline with one command, streamlining the process 

and minimizing user intervention. The workflow involves: 

(1) Data Preparation: 

• Combining multiple CSV files into unified nodes.csv and edges.csv files 

using the merge_data.py script. 

• Ensuring consistency and correctness in data format and structure. 

(2) Graph Construction: 

• Using the main.py script to construct the argumentation graph in Neo4j. 

• Loading the combined nodes.csv and edges.csv files into the database, 

ensuring seamless integration of all argumentative components. 

(3) Embedding Generation: 

• Generating semantic embeddings (all-mpnet-base-v2), structural embed-

dings (FastRN), and aggregated semantic embeddings (GraphSAGE). 

• Employing dedicated scripts for each type of embedding, with hyperpa-

rameters documented and easily adjustable within their respective Py-

thon files. 

(4) Visualization and Analysis: 

• Utilizing Jupyter notebooks to visualize embeddings in three-dimensional 

space using t-SNE. 

• Performing clustering and comparative analysis using k-means and Sil-

houette Scores. 
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3.6.2  Tools and Technologies 
The following tools and technologies are employed to ensure accuracy and re-

producibility: 

• Python for scripting and analysis, leveraging libraries such as numpy, 

pandas, scikit-learn, and matplotlib. 

• Neo4j as the graph database platform for managing and querying the ar-

gumentation graph. 

• Jupyter Notebooks for interactive visualizations and exploratory analysis. 

• Pre-trained Models like all-mpnet-base-v2 for semantic embeddings and 

GraphSAGE for aggregated embeddings. 

• Version Control using Git to track changes in scripts, datasets, and con-

figurations. 

3.6.3  Reproducibility Features 
To further ensure consistency and reproducibility across stochastic methods, a 

random seed of 42 is set for all applicable processes, such as embedding gener-

ation, clustering, and visualization. This guarantees that results are replicable un-

der identical configurations. It is important to note that this does not apply to the 

synthetic dataset generation, as its variability is intentionally preserved to simu-

late real-world scenarios. 

To enhance reproducibility, the following practices are implemented: 

1. Documentation: 

• Each script includes detailed comments explaining its functionality, ex-

pected inputs, and outputs. 

• The README.md file provides clear instructions for installation, usage, 

and troubleshooting. 

2. Hyperparameter Configuration: 

• All hyperparameters for embedding generation and analysis are central-

ized within easily accessible Python files. 

• Clear guidelines on tuning hyperparameters are provided in the docu-

mentation. 
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3. Dataset Versioning: 

• The synthetic dataset used in this study is versioned and accompanied 

by the prompt used for its generation to ensure traceability. 

4. Reproducible Pipelines: 

• The entire workflow, from data preparation to visualization, can be exe-

cuted using modular scripts and notebooks. 

• The ability to execute the complete pipeline with a single command en-

sures streamlined reproducibility and minimizes user error. 

• Output files, such as embeddings and visualizations, are consistently 

named and organized for easy reference. 

3.6.4  Challenges and Limitations 
Despite the rigorous workflow, certain limitations should be acknowledged: 

• Synthetic Dataset: While the synthetic dataset ensures control over 

structure and annotations, it may not fully capture the complexity of real-

world argumentative discourse. 

• Computational Requirements: Depending on the size of the datasets, 

the embedding generation process, particularly for GraphSAGE, is re-

source-intensive and may require high-performance computing resources. 

By addressing these challenges and adhering to the outlined practices, this study 

provides a robust foundation for reproducible and transparent research in the 

modeling of argumentative discourse. 

3.7 Methodological Summary 
This section synthesizes the diverse methodologies employed in this study to 

systematically generate, visualize, and compare embedding spaces for argumen-

tative graphs. It underscores the balance between methodological rigor and in-

terpretability, ensuring that the analytical outcomes align closely with the re-

search objectives. 

The methodological framework prioritizes efficiency and clarity, offering a stream-

lined yet robust approach to understanding argumentative discourse. Embedding 

spaces are evaluated using visualization and clustering techniques, which 
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provide complementary insights into their representational strengths and limita-

tions. These methodologies emphasize the dual importance of qualitative inter-

pretation and quantitative rigor in examining semantic and structural nuances 

within the discourse. 

Scatterplots and clustering metrics emerge as core analytical deliverables, bridg-

ing the gap between abstract representations and tangible insights. Through 

techniques such as t-SNE visualizations and Silhouette Score assessments, the 

study highlights patterns, thematic groupings, and structural dynamics intrinsic to 

argumentative discourse. This comprehensive approach ensures that the chosen 

methodologies not only fulfill theoretical objectives but also offer practical applica-

bility for advancing research in discourse modeling. 

The results presented in the subsequent chapter build on this methodological 

foundation, offering an in-depth exploration of the comparative performance of 

semantic, structural, and aggregated semantic embeddings. These analyses illu-

minate the potential of embedding spaces to capture the intricate interplay of ar-

guments, fostering a deeper understanding of their strengths and limitations 

within varied discourse environments. 
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4 Results and Analysis 

4.1 Overview of Results 
This section provides an in-depth examination of the results obtained through the 

methodologies described in the previous chapter. By addressing the limitations 

of traditional argumentation models highlighted in the problem statement, the 

analysis evaluates the extent to which semantic, structural, and aggregated se-

mantic embedding spaces capture nuanced argumentative dynamics. Quantita-

tive metrics, visualization insights, and clustering analysis are employed to as-

sess their representational strengths and limitations, with a focus on modeling the 

interplay between structural relationships and semantic content. 

4.2 Structural Embedding Analysis 

4.2.1 Visualization Insights 
The structural embedding space is visualized through three distinct perspectives 

to explore the representational capacity of the embeddings and highlight key clus-

tering patterns. A 3D visualization is employed for all perspectives, providing a 

detailed spatial representation of the embedding space. For enhanced readabil-

ity, an interactive digital version is made available online, allowing for deeper ex-

ploration of the clustering patterns and relationships. 

These visualizations collectively provide a comprehensive view of the structural 

embedding space, uncovering its capacity to represent argumentative dynamics 

from multiple dimensions. Readers are encouraged to explore the digital version 

for enhanced interaction with the embedding space and deeper insights [44]. De-

tailed observations and implications from these perspectives will be explored in 

the interpretative analysis. 
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Separation of Argumentative Roles 

Nodes are color-coded based on their type, distinguishing between Claims, 

Premises, Questions, and Authors. This perspective offers insights into how well 

the structural embeddings separate argumentative components, emphasizing 

their relational roles and interactions. 

 

  

Figure 6 - Structural Embeddings by Node Type 
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Thematic Sections 

Nodes are color-coded according to their thematic section, such as Introduction, 

Ethical and social dimensions, Macroeconomic Impacts, etc. This perspective ex-

amines whether the embeddings capture thematic groupings within the graph, 

reflecting logical segmentations of the discourse. 

 

 

  

Figure 7 - Structural Embeddings by Thematic Sections 
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Author Attribution 

Each node is color-coded based on its author. This visualization explores the 

impact of authorship on structural organization, identifying whether individual au-

thors’ contributions exhibit distinct patterns or overlap significantly with others. 

 

4.2.2  Interpretative Analysis 
The structural embeddings reveal significant insights into the relational and or-

ganizational dynamics of the argumentation graph. Observations from the visual-

izations are detailed below: 

Separation of Node Types 

The embeddings demonstrate a nuanced clustering of elements, affirming their 

ability to represent the logical architecture of the argumentation graph. Elements 

Figure 8 - Structural Embeddings by Author Attribution 
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closely connected within the graph, either directly or indirectly, tend to form co-

hesive clusters: 

• Argumentative Elements and Authors: Claims, Premises, and Ques-

tions often cluster near their respective authors, reflecting the direct rela-

tionship between argumentative contributions and their originators. 

• Supporting and Attacking Premises: Premises providing support or op-

position are consistently situated near the Claims they reinforce or contra-

dict, indicating the embeddings’ ability to capture argumentative dynamics 

effectively. 

• Claims and Questions: Claims cluster closely with the Questions they 

address or are challenged by, highlighting the embeddings’ capacity to 

model inquiry-response relationships within the discourse. 

This clear alignment of elements underscores the structural embeddings’ capac-

ity to capture both explicit and implicit connections within the argumentative 

framework, while maintaining logical cohesion. 

Thematic Groupings 

Nodes associated with distinct thematic sections, such as Economics, Ethics, and 

Politics, exhibit localized clustering. This pattern indicates that structural embed-

dings successfully capture thematic coherence within argumentative discourse, 

even in the absence of explicit semantic content. These thematic clusters often 

reflect logical segmentations in the discourse, where arguments and premises 

related to a specific topic naturally converge within the embedding space. For 

example, discussions centered on "Economics" form a distinct cluster, likely en-

compassing claims and premises discussing financial policies, market behaviors, 

and economic theories. 

However, overlaps between themes suggest interdependencies where discus-

sions on specific topics influence the other topic and vice versa. Such overlaps 

highlight the embeddings' sensitivity to nuanced relationships between themes, 

capturing the interplay of ideas that span multiple discourse categories. Addition-

ally, these patterns provide insight into areas where the discourse transitions be-

tween topics, often indicative of multifaceted arguments that leverage concepts 

from different thematic domains. This ability to capture both distinct clusters and 



Results and Analysis 69 

inter-thematic overlaps enhances the utility of structural embeddings in modeling 

complex argumentative environments. 

Authorship Dynamics 

The author-based visualization reveals nuanced patterns due to the directional 

reversal of the "AUTHORED_BY" relationship, which minimizes its dominance in 

the embedding space. As a result, distinct authorship clusters are less pro-

nounced. Instead, argumentative elements tend to align more closely based on 

their relational roles rather than strict authorship boundaries. 

Notably, the contributions of the Moderator and Professor Li Wei, a neutral debate 

participant, are more distributed across the embedding space. This distribution 

reflects their balanced engagement with both pro and contra participants, empha-

sizing their neutral and connective roles within the debate. For other participants, 

clustering remains partially visible, particularly where arguments strongly align 

with specific perspectives or recurring themes. These observations suggest that 

while authorship contributes to the structural organization, it is secondary to the 

relationships and argumentative dynamics captured by the embeddings. 

Collectively, these findings underscore the structural embeddings’ capacity to 

model the topological characteristics of argumentative graphs, capturing logical 

relationships, thematic segmentation, and authorial impact effectively. These ob-

servations lay the groundwork for exploring how structural embeddings contribute 

to broader discourse modeling and identifying areas for further refinement. 

4.3 Semantic Embedding Analysis 

4.3.1  Quantitative Performance 
This section quantitative evaluates the clustering quality within the semantic em-

beddings space. Clustering quality is assessed using Silhouette Scores across 

a range of cluster numbers to identify optimal configurations for capturing nu-

anced argumentative dynamics. The analysis focuses on how these embeddings 

address limitations in traditional models, such as modeling semantic content and 

interconnections within the argumentation graph. 
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Key Observations 

A graph of Silhouette Scores versus the number of clusters reveals peaks indi-

cating the most coherent cluster configurations.  

 

For semantic embeddings, the following cluster numbers yielded the highest 

scores: 

 

Table 1 - Semantic Embeddings: Peak Silhouette Scores against Number of Clusters 

Number of Clusters Silhouette Score 

43 0.0682 

29 0.0673 

27 0.0668 

41 0.0661 

38 0.0652 

 

Figure 9 - Semantic Embeddings: Silhouette Score vs the number of clusters (k-means) 
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These scores highlight the embeddings’ capability to delineate clusters corre-

sponding to semantic groupings. Aggregated semantic embeddings are expected 

to demonstrate improved clustering due to their integration of structural and se-

mantic information, enabling more nuanced representations. 

Interpretation 

The clustering performance of semantic embeddings indicates that the represen-

tation captures meaningful patterns in argumentative components, though the 

Silhouette Scores suggest a moderate separation of clusters. The variation in 

peak cluster numbers reflects the complexity of discourse elements, with larger 

cluster counts likely corresponding to finer-grained distinctions between roles, 

themes, and relationships. 

Aggregated semantic embeddings, by combining structural and semantic infor-

mation, are hypothesized to exhibit improved cluster cohesion and separation. 

Their performance will be discussed in comparison to semantic embeddings to 

evaluate the added value of structural integration in capturing argumentative dy-

namics. Further analysis and visualization insights are provided in subsequent 

sections. 

4.3.2  Visualization Insights 
As mentioned earlier, visualizing the embedding space provides critical insights 

into its representational capacity and the clustering patterns it produces. Here, 

the semantic embedding space is explored through a 3D visualization, offering a 

spatial representation of how these embeddings encode argumentative compo-

nents and their relationships. To enhance accessibility and interactivity, an online 

digital version of the visualization has been made available, allowing readers to 

further examine the clustering patterns in detail. 

These visualizations collectively reveal a nuanced perspective on the semantic 

embedding space, demonstrating its ability to capture argumentative dynamics 

from multiple angles. By leveraging the interactive version, readers can delve 

deeper into specific clusters and relationships [45]. The following sections outline 

detailed observations and their implications. 
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Separation of Argumentative Roles 

Nodes are color-coded based on their type, distinguishing between Claims, 

Premises, and Questions. This perspective offers insights into how well the se-

mantic embeddings separate argumentative components, emphasizing their re-

lational roles and interactions. Observing these clusters helps assess the seman-

tic embeddings’ ability to preserve logical distinctions among these key argumen-

tative roles. 

 

  

Figure 10 - Semantic Embeddings by Node Type 
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Thematic Sections 

Nodes are color-coded according to their thematic section, such as "Introduction," 

"Ethical and Social Dimensions," "Macroeconomic Impacts," etc. This perspec-

tive examines whether the embeddings capture thematic groupings within the 

graph, reflecting logical segmentations of the discourse. Clear thematic clusters 

indicate the embeddings’ capacity to encode contextual nuances effectively, 

while overlaps may reveal areas of discourse where themes are interconnected. 

  

Figure 11 - Semantic Embeddings by Thematic Section 
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Author Attribution 

Each node is color-coded based on its author. This visualization explores the 

impact of authorship on the semantic organization of the embeddings, identifying 

whether individual authors’ contributions exhibit distinct patterns or overlap sig-

nificantly with others. Such patterns can provide insights into the semantic con-

sistency or diversity in the arguments presented by different authors. 

 

 

4.3.3  Interpretative Analysis 
This section provides an interpretative analysis of the clustering patterns ob-

served in the semantic embedding space. By examining the separation of node 

types, thematic groupings, and authorship dynamics, this analysis highlights the 

representational strengths and limitations of semantic embeddings in capturing 

argumentative discourse. 

Figure 12 - Semantic Embeddings by Author 
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Separation of Node Types 

As expected, semantic embedding space does not exhibit observable clustering 

based on node types such as Claims, Premises, or Questions. This lack of dis-

tinction suggests that semantic embeddings prioritize contextual and topical in-

formation over the explicit argumentative roles of nodes. While this is a limitation 

in differentiating roles, it aligns with the model's focus on capturing semantic re-

lationships and content. 

Thematic Groupings 

Clear and distinct thematic clustering is observed in the semantic embedding 

space, which is expected for a semantic model as each section of the discourse 

handles semantically distinct topics. For example, sections such as "Ethical and 

Social Dimensions" and "Macroeconomic Impacts" form coherent clusters, re-

flecting the embeddings’ ability to group arguments by topic. This indicates that 

semantic embeddings effectively encode contextual nuances and thematic sep-

arations within the discourse. 

However, the "Introduction" section exhibits a more distributed clustering com-

pared to other focused sections of the debate. This distribution is anticipated, as 

the introduction typically serves as a broad overview, addressing multiple themes 

and setting the stage for the subsequent focused discussions. In contrast, sec-

tions that focus on politics and economics demonstrate tighter, more localized 

clusters due to their concentrated focus on specific topics. 

Some overlaps are evident between thematic clusters, particularly where argu-

ments span multiple domains or involve interconnected discussions. This sug-

gests that some arguments bridge these themes, highlighting areas where dis-

course transitions or integrates different perspectives. These overlaps provide 

valuable insights into the complexity of the arguments and the interconnected 

nature of real-world debates. 

Authorship Dynamics 

The authorship dynamics in the semantic embedding space closely resemble 

those observed in the structural embedding space. Distinct and separated clus-

ters are formed by participants with opposing stances: 
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• Pro (Dr. Alicia Fernandez) and Contra (Markus Blake) participants ex-

hibit clear separation, as their contributions strongly oppose each other. 

This pattern reflects the embeddings’ ability to encode the semantic diver-

gence inherent in their arguments. 

• Neutral Participants (Moderator and Professor Li Wei) act as bridges 

between the pro and contra stances. This bridging role is expected since 

their contributions are more balanced, addressing both sides of the debate 

and often mediating discussions. Their distributed positioning highlights 

their role in facilitating or contextualizing the arguments of other partici-

pants. 

These patterns illustrate that semantic embeddings effectively capture the se-

mantic context and stance-specific dynamics of authors, further emphasizing 

their utility in representing argumentative discourse. However, the reliance on se-

mantic content over structural roles limits their capacity to differentiate node 

types, suggesting the need for complementary approaches to enhance represen-

tational depth. 

This analysis underscores the strengths of semantic embeddings in thematic rep-

resentation and authorship-based clustering, while also identifying areas for im-

provement in role differentiation. These findings form a foundation for evaluating 

the integration of structural and semantic information in subsequent analyses. 

4.4 Aggregated Semantics Embedding Analysis 

4.4.1  Quantitative Performance 
The quantitative analysis of aggregated semantic embeddings focuses on their 

clustering quality and ability to represent nuanced argumentative dynamics. Us-

ing Silhouette Scores as a metric, the study evaluates how effectively these em-

beddings delineate clusters of argumentative components by integrating both se-

mantic and structural information. The combination of GraphSAGE’s neighbor-

hood aggregation of semantic embeddings enables the model to capture both 

content and contextual relationships, offering a holistic representation of the dis-

course. 
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Key Observations 

A graph of Silhouette Scores versus the number of clusters reveals peaks indi-

cating the most coherent cluster configurations.  

 

A plot of Silhouette Scores against the number of clusters reveals notable peaks, 

indicating the most coherent cluster configurations. For aggregated semantic em-

beddings, the following cluster numbers yielded the highest scores: 

 

Table 2 - Aggregated Semantic Embeddings: Peak Silhouette Scores against Number of Clusters 

Number of Clusters Silhouette Score 

21 0.2910 

26 0.2704 

29 0.2674 

18 0.2654 

37 0.2645 

Figure 13 - Aggregated Semantic Embeddings: Silhouette Score vs the number of clusters (k-means) 
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These scores surpass those observed for semantic embeddings alone, reflecting 

the added value of integrating structural information. The improvement in cluster 

cohesion and separation underscores the ability of aggregated embeddings to 

model the interplay between argumentative roles, thematic contexts, and struc-

tural relationships within the discourse. 

The analysis also highlights the dynamic range of cluster sizes, with larger clus-

ters likely representing broader thematic segments, while smaller clusters cap-

ture fine-grained distinctions between argumentative components. This versatility 

demonstrates the efficacy of aggregated embeddings in addressing the diverse 

representational requirements of argumentative discourse. 

Interpretation 

The significant improvement in Silhouette Scores for aggregated semantic em-

beddings compared to purely semantic embeddings can be attributed to the inte-

gration of structural information alongside semantic content. By leveraging 

GraphSAGE’s neighborhood aggregation, these embeddings capture not only 

the intrinsic properties of individual nodes but also the contextual relationships 

defined by the argumentation graph’s topology. This dual-layer representation 

enables the model to account for both the semantic nuances and the structural 

dynamics inherent in argumentative discourse. 

Several factors contribute to these results. First, the structural information en-

hances the embeddings’ ability to model inter-node relationships, such as sup-

port, attack, and inquiry-response dynamics. This added layer of context ensures 

that nodes with similar roles or connectivity patterns converge in the embedding 

space, leading to more coherent clusters. Second, the incorporation of structural 

attributes allows the embeddings to distinguish between nodes that may share 

similar semantic features but differ in their relational roles within the graph. For 

example, a Premise and a Claim with comparable semantic content may occupy 

distinct positions in the aggregated embedding space due to their differing con-

nections and argumentative functions. 

However, the reliance on structural integration also introduces potential limita-

tions. The improved clustering quality observed in aggregated embeddings could 
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reflect a bias towards structural cohesion, potentially overshadowing finer-

grained semantic distinctions. This trade-off underscores the need for careful bal-

ancing between semantic and structural features to ensure comprehensive rep-

resentation. Additionally, the sensitivity of aggregated embeddings to graph to-

pology may lead to variability in clustering performance across datasets with dif-

fering structural characteristics. These factors highlight the importance of da-

taset-specific parameter tuning and further validation to generalize these findings 

across diverse argumentative contexts. 

4.4.2  Visualization Insights 
The visualization of aggregated semantic embeddings provides an intuitive un-

derstanding of how these representations encode argumentative components 

and their relationships. By projecting the high-dimensional embedding space into 

a three-dimensional scatterplot using t-SNE, key patterns and clustering tenden-

cies are revealed.  

Again, the online versions of these visualization are available in an online repos-

itory for dynamic exploration of the embedding space [46]. 

The visualization explores three perspectives: separation of argumentative roles, 

thematic sections, and author attribution. 

Separation of Argumentative Roles 

Nodes are color-coded based on their argumentative type, distinguishing be-

tween Claims, Premises, and Questions. This perspective offers insights into how 

well the aggregated semantic embeddings separate argumentative components, 

emphasizing their relational roles and interactions. Observing these clusters 

helps assess the semantic embeddings’ ability to preserve logical distinctions 

among these key argumentative roles. 
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Thematic Sections 

Nodes are color-coded according to their thematic section, such as "Introduction," 

"Ethical and Social Dimensions," "Macroeconomic Impacts," etc. This perspec-

tive examines whether the embeddings capture thematic groupings within the 

graph, reflecting semantic segmentations of the discourse. Clear thematic clus-

ters indicate the embeddings’ capacity to encode contextual nuances effectively, 

while overlaps may reveal areas of discourse where themes are interconnected. 

Figure 14 - Aggregated Semantic Embeddings by Argumentative Role 
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Author Attribution 

Each node is color-coded based on its author. This visualization explores the 

impact of authorship on the semantic organization of the embeddings, identifying 

whether individual authors’ contributions exhibit distinct patterns or overlap sig-

nificantly with others. Such patterns can provide insights into the semantic con-

sistency or diversity in the arguments presented by different authors. 

Figure 15 - Aggregated Semantic Embeddings by Thematic Sections 
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4.4.3  Interpretative Analysis 
Aggregated semantic embeddings offer a comprehensive representation of argu-

mentative discourse by combining the strengths of semantic and structural ap-

proaches. This section interprets the clustering patterns observed in the visuali-

zation and evaluates the embeddings’ capacity to capture argumentative roles, 

thematic coherence, and authorship dynamics. 

Separation of Node Types 

Aggregated embeddings do not demonstrate superior differentiation between ar-

gumentative roles compared to semantic embeddings. However, they excel in 

maintaining logical proximity to related elements, such as Claims, Premises, and 

Questions. Questions cluster around their associated Claims, effectively captur-

ing inquiry-response relationships. This ability to preserve logical connections 

Figure 16 - Aggregated Semantic Embeddings by Author 
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affirms the model’s capacity to represent both content and context, potentially 

addressing a key limitation of purely semantic approaches. 

Thematic Groupings 

Thematic clusters are better defined compared to those generated by semantic 

embeddings, with minimal overlap between sections. Aggregated embeddings 

preserve the semantic richness of arguments while integrating structural relation-

ships, resulting in coherent and contextually accurate thematic representations. 

Overlaps observed between interdisciplinary sections reflect genuine discourse 

complexities, such as arguments spanning multiple domains. These patterns 

highlight the embeddings’ superior capacity to model nuanced argumentative dy-

namics while maintaining thematic clarity. 

Authorship Dynamics 

The embeddings reveal diminished authorial influences compared to both se-

mantic-only and structure-only embeddings. This reduced clarity may be at-

tributed to the omission of direct authorship relationships and authors from the 

embedding space, a limitation shared with semantic-only embeddings. However, 

the aggregation process appears to dilute the isolated semantic individuality of 

each node with the features of its neighbors, thereby obscuring clear links to their 

respective authors. While this trade-off results in improved thematic grouping 

through aggregation, it comes at the expense of semantic specificity and identifi-

able authorship. The dispersed positioning of neutral participants still emphasizes 

their bridging role, but the reduced clarity in authorial clusters suggests a loss of 

semantic granularity in favor of relational and thematic cohesion. 

In summary, aggregated semantic embeddings offer a nuanced framework for 

modeling argumentative discourse by integrating semantic and structural infor-

mation. While they excel in capturing thematic coherence and logical proximity 

among related elements, they face challenges in preserving semantic individual-

ity and authorial clarity. These insights underscore their potential utility for ad-

vanced discourse analysis, albeit with limitations that highlight the trade-offs in-

herent in aggregating diverse informational layers. 
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4.5 Comparative Evaluation of Semantic Embedding Spaces 
This section provides a comparative evaluation of semantic and aggregated se-
mantic embedding spaces, focusing on their quantitative clustering results, in-

cluding the number of clusters and Silhouette Scores. By analyzing these metrics, 

the study assesses their respective capacities to represent argumentative dis-

course effectively. 

4.5.1  Quantitative Analysis 
Quantitative evaluation of the embedding spaces focuses on their clustering qual-

ity, as measured by Silhouette Scores, across varying cluster configurations. This 

approach ensures an objective comparison of their capacity to delineate distinct 

argumentative components. 

Semantic Embeddings 

The clustering performance of semantic embeddings reveals moderate Silhou-

ette Scores, with the highest peak observed at 0.0682 for 43 clusters. These re-

sults indicate that semantic embeddings effectively group nodes based on con-

textual and topical similarities but lack precision in delineating argumentative 

roles and relationships. The variability in peak cluster counts reflects the 

Figure 17 - Silhouette Score per Cluster: Semantic Embeddings vs. Aggregated Semantic Embeddings 
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embeddings’ sensitivity to the complex interplay of semantic nuances within the 

discourse. While these embeddings excel in capturing thematic distinctions, their 

inability to incorporate structural features limits their capacity to model inter-node 

relationships comprehensively. 

Aggregated Semantic Embeddings 

Aggregated semantic embeddings demonstrate the highest clustering quality 

among the two spaces, achieving a peak Silhouette Score of 0.291 for 21 clus-

ters. By integrating semantic and structural information through GraphSAGE’s 

neighborhood aggregation, these embeddings provide a holistic representation 

of the discourse. This integration enhances cluster cohesion and separation, al-

lowing for a nuanced depiction of both argumentative roles and thematic contexts. 

The improved clustering performance underscores the added value of combining 

content and context, although this approach may occasionally obscure fine-

grained semantic distinctions in favor of structural coherence. 

4.5.2  Comparative Interpretation 
The comparative evaluation highlights the trade-offs inherent in semantic and ag-

gregated semantic embedding spaces. Semantic embeddings excel in capturing 

contextual and thematic nuances, making them ideal for analyses focused on 

semantic content. However, their inability to represent structural relationships lim-

its their applicability for tasks requiring a detailed understanding of argumentation 

dynamics. 

Aggregated semantic embeddings offer a more comprehensive representation by 

combining the strengths of semantic and structural dimensions. Their superior 

clustering performance and balanced representation of content and context make 

them well-suited for complex discourse analyses. Nonetheless, the integration of 

structural features may occasionally obscure fine-grained semantic distinctions, 

necessitating careful consideration of specific analytical goals. 

This comparative analysis underscores the importance of selecting embedding 

spaces based on the research objectives and the specific aspects of argumenta-

tive discourse being studied. By leveraging the unique strengths of each ap-

proach, researchers can tailor their methodologies to achieve a deeper and more 

nuanced understanding of argumentative interactions. 
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4.6 Challenges and Limitations 

4.6.1  Bias in Synthetic Datasets 
One significant challenge was the inherent bias within the synthetic dataset used 

for evaluation. Although the dataset was designed to emulate real-world argu-

mentative discourse, its artificial nature may not fully capture the complexity and 

diversity of genuine debates. For instance, it fails to account for cultural variability 

in argumentation styles, which can significantly influence the framing and pro-

gression of discourse. Additionally, the dataset does not adequately reflect in-

complete arguments or evolving debates, both of which are common in real-world 

contexts. These aspects are critical for modeling authentic argumentative dynam-

ics and highlight the need for more representative datasets in future analyses. 

These biases could potentially influence the clustering results, leading to findings 

that are less representative of broader, more nuanced argumentative contexts. 

Furthermore, the dataset’s structure and content may have inadvertently favored 

certain embedding methods over others, introducing skewed performance as-

sessments. This bias underscores the need for datasets that better simulate the 

diversity and unpredictability of real-world discourse, encompassing a wider 

range of argumentative styles, themes, and contexts. 

4.6.2  Complexity of Real-World Data Acquisition 
Real-world data is not neatly structured as the synthetic dataset used in this anal-

ysis. Obtaining data from real-world discourse would involve the use of argument 

mining techniques, which introduce additional layers of complexity. These pro-

cesses, including preprocessing and graph construction, are far more intricate in 

real-world scenarios, often requiring extensive manual validation to ensure accu-

racy. The synthetic dataset's simplified structure fails to reflect the inherent mess-

iness of authentic argumentative discourse, further limiting the applicability of 

findings. 

4.6.3  Limitations of Dataset Size and Content 
The small dataset size was another critical limitation, as it consisted of only 100 

nodes with very limited content, often reduced to a few sentences per node. This 

restriction not only limits the generalizability of findings but also reduces the ability 

of embeddings to capture more complex relationships that emerge in larger and 
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more diverse datasets. A larger dataset with richer content would likely reveal 

deeper insights into the strengths and weaknesses of different embedding ap-

proaches. 

4.6.4  Connectivity Challenges in Synthetic Graphs 
Additionally, the connectivity of the synthetic data graph posed challenges when 

compared to real-world argumentative graphs. Real-world discourse often exhib-

its highly complex and irregular connectivity patterns, such as multi-layered inter-

dependencies and non-linear argumentative structures. The simplified connectiv-

ity in the synthetic dataset may fail to represent these complexities, potentially 

limiting the applicability of findings to more intricate real-world scenarios. Future 

studies should prioritize the use of datasets that more closely mirror the nuanced 

connectivity patterns observed in real-world argumentation. 

4.6.5  Inadequacies in Graph Schema Design 
The graph schema itself was another source of limitation, as it did not model all 

the complexities inherent in real-world debates and argumentative discourse. For 

example, the schema may have overlooked nuanced relationships such as tem-

poral aspects, rhetorical strategies, indirect rebuttals, emotional appeals, or au-

dience-specific framing. These types of dynamics play a critical role in real-world 

argumentation, and their absence restricts the ability of embeddings to fully cap-

ture the multi-dimensional nature of debates. Future schema designs should in-

corporate such relational types to better reflect the intricacies of authentic argu-

mentative discourse. 

4.6.6  Hyperparameter Sensitivities 
Another challenge involved the hyperparameters of the stochastic methods em-

ployed, particularly GraphSAGE and FastRN. These methods rely on various hy-

perparameters, such as neighborhood sampling sizes and learning rates, which 

can significantly impact the quality of the resulting embeddings. The process of 

tuning these hyperparameters is computationally intensive and requires careful 

consideration to avoid suboptimal configurations that might distort the analysis. 

For instance, overly small neighborhood sampling sizes in GraphSAGE can result 

in a lack of contextual information, reducing the model’s ability to capture mean-

ingful relationships. Conversely, excessively large sampling sizes might introduce 
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noise by incorporating irrelevant nodes. Similarly, poorly chosen learning rates 

can lead to slow convergence or unstable training processes, further impacting 

the quality of the embeddings. These examples highlight the importance of sys-

tematic parameter tuning to ensure robust and accurate analysis outcomes. Es-

tablishing robust and automated hyperparameter optimization techniques could 

mitigate this issue and enhance the reliability of these methods. 

4.6.7  Limitations in Semantic Embedding Model Choice 
The choice of semantic embedding model also introduced limitations. Different 

semantic models have varying strengths and weaknesses, and the selection of a 

particular model inherently biases the results. For instance, models prioritizing 

contextual embedding may underperform in representing explicit argumentative 

roles, while others may struggle with capturing subtle semantic nuances. A more 

comprehensive evaluation of multiple semantic embedding models could provide 

a clearer understanding of their comparative strengths and limitations in the con-

text of argumentative discourse analysis. 

4.6.8  Directionality Assumptions in Aggregation Methods 
Lastly, the directionality of relationships during aggregation in methods like 

FastRN and GraphSAGE posed a significant challenge. These methods rely on 

specific assumptions about the directional flow of information, which may not al-

ways align with the underlying dynamics of argumentative discourse. For exam-

ple, reciprocal rebuttals, where two opposing arguments engage in back-and-

forth responses, challenge the assumption of unidirectional flow and require mod-

els to capture bidirectional dynamics. Similarly, arguments that incorporate lay-

ered inquiries—where a question is followed by multiple sub-questions and re-

sponses—may not be adequately represented by methods assuming a simple 

flow of information. These examples highlight the importance of refining aggre-

gation and discourse modelling techniques to better capture the complex, multi-

directional nature of real-world argumentative interactions. 

4.6.9 Preliminary Nature of Evaluation 
This analysis represents a very preliminary evaluation of the embeddings' quality. 

Much more work is required to properly assess the aggregated embeddings, par-

ticularly in terms of their performance in downstream machine learning tasks. 
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Evaluating how these embeddings perform in real-world applications, such as 

automated argument classification or stance detection, will provide a more com-

prehensive understanding of their utility and limitations. Future research must fo-

cus on these aspects to establish the robustness and practicality of aggregated 

embeddings. 

4.6.10  Conclusion 
Collectively, these challenges reveal critical areas for improvement in dataset de-

velopment, visualization methods, embedding design, and computational strate-

gies. Addressing these limitations will be essential to advance the robustness and 

applicability of embedding-based methodologies in the field of argumentative dis-

course analysis. 

4.7 Implications and Future Directions 
The findings presented in this chapter offer significant insights into the represen-

tational capacities of embedding spaces in capturing the nuanced dynamics of 

argumentative discourse. These insights underscore the potential for further ad-

vancements in the field of argumentation analysis, particularly in the development 

of embedding methodologies that integrate semantic and structural dimensions 

effectively. 

One of the key implications of this study lies in the demonstrated benefits of ag-

gregated semantic embeddings. By combining the semantic richness of argu-

ment content with the structural relationships encoded within argumentation 

graphs, these embeddings provide a more holistic representation of discourse. 

This dual-layered approach enhances clustering coherence and captures inter-

connections between argumentative components, offering new opportunities for 

improving discourse modeling frameworks. Future research should build on these 

findings by exploring additional methods for aggregating diverse data dimen-

sions, such as temporal dynamics or rhetorical strategies, to enrich the represen-

tational depth of embedding spaces. 

The observed limitations of synthetic datasets highlight the need for more repre-

sentative and diverse data sources. Synthetic datasets, while useful for controlled 

evaluations, fail to capture the variability and complexity of real-world argumen-

tative interactions. Future research should prioritize the collection and utilization 
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of real-world datasets, encompassing diverse cultural, thematic, and linguistic 

contexts. Such datasets will enable a more robust evaluation of embedding meth-

odologies and ensure their applicability to a wider range of discourse scenarios. 

Another promising direction involves refining the aggregation techniques used in 

embedding methodologies. The observed trade-offs between structural and se-

mantic specificity suggest the need for approaches that dynamically balance 

these dimensions based on the discourse context. Techniques that incorporate 

adaptive weighting schemes or context-aware aggregation mechanisms could 

address this challenge, ensuring that embeddings are tailored to the specific 

characteristics of the discourse being modeled. 

Moreover, the integration of advanced machine learning techniques, such as 

transformer-based models and graph neural networks, offers significant potential 

for improving embedding quality. These approaches could capture bidirectional 

and hierarchical relationships within argumentative graphs more effectively, ad-

dressing limitations in existing aggregation methods. Researchers should also 

explore the application of these embeddings in downstream tasks, such as auto-

mated argument classification, stance detection, or summarization, to assess 

their utility in practical applications. 

Finally, the findings emphasize the importance of interdisciplinary collaboration 

in advancing argumentation analysis. Combining insights from fields such as 

computational linguistics, cognitive science, and rhetoric can lead to the develop-

ment of richer models that reflect the multifaceted nature of argumentative dis-

course. Such collaborations could also inform the design of visualization tools 

that facilitate intuitive exploration of embedding spaces, bridging the gap between 

technical methodologies and user-friendly interpretability. 

4.8 Summary 
This chapter has provided a detailed examination of the results obtained through 

the structural, semantic, and aggregated embedding spaces, shedding light on 

their strengths, limitations, and potential for modeling argumentative discourse. 

The structural embeddings excelled in capturing topological relationships, high-

lighting the logical architecture of argumentation graphs and thematic coherence. 

Semantic embeddings demonstrated robust thematic clustering but faced 
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challenges in distinguishing argumentative roles. Aggregated semantic embed-

dings emerged as the most effective representation, combining structural and se-

mantic dimensions to deliver enhanced clustering quality and nuanced modeling 

of argumentative dynamics. 

The comparative evaluation revealed critical trade-offs between these ap-

proaches, emphasizing the importance of aligning embedding methodologies 

with specific analytical objectives. While aggregated embeddings excel in com-

prehensive discourse modeling, their reliance on structural integration may ob-

scure finer-grained semantic details. The study also identified key challenges, 

including the limitations of synthetic datasets, the complexity of real-world dis-

course acquisition, and the sensitivity of embedding methods to hyperparameters 

and graph schemas. 

The chapter concluded with a discussion of the implications of these findings and 

proposed future directions for advancing embedding methodologies. By address-

ing current limitations and exploring novel techniques, researchers can refine the 

tools and approaches used in argumentative discourse analysis, contributing to 

a deeper understanding of how arguments are structured, interconnected, and 

contextualized. These advancements hold promise for both theoretical explora-

tion and practical applications, paving the way for more sophisticated and adapt-

able frameworks in the study of argumentation. 
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5 Conclusion 

This chapter synthesizes the findings, addressing the research question and re-

flecting on the theoretical and practical aspects of the study. Furthermore, it crit-

ically examines the limitations and suggests avenues for future exploration. 

5.1 Summary of Research 
This study set out to explore how argumentative discourse can be effectively 

modeled as an argumentation graph integrating both structural and semantic el-

ements. The research aimed to address the limitations in traditional argumenta-

tion models by incorporating graph embeddings and advanced textual embed-

dings into a more comprehensive argumentation graph framework. By combining 

machine learning techniques for representational learning, including dimension-

ality reduction and clustering, with theoretical insights from argumentation theory, 

the study illustrated how such a framework can capture nuanced argumentative 

roles and relationships. The findings indicate that integrating semantic and struc-

tural embeddings enhances the ability to analyze and represent discourse, offer-

ing a more detailed approach to discourse analysis. 

5.2 Contributions 
The study contributes to the fields of argumentation theory and discourse analy-

sis by offering a framework that brings together traditional argumentation graphs 

with semantic embeddings to better represent argumentative interactions. Inte-

grating large language models, such as Sentence Transformers, into the frame-

work has added depth to the semantic aspects of the graphs. The research pro-

vides a basis for developing computational tools that can evaluate and summa-

rize complex debates, which could prove useful in a variety of contexts. While 

these contributions are promising, they build on and align with existing advance-

ments, extending the work of prior studies to address specific gaps. 

5.3 Future Work 
Several directions for future research arise from this study. Automating the con-

struction of argumentation graphs from real-world discourse data, such as social 

media or online forums, through Argument Mining techniques represents one 

promising area. Such automation would enable the framework to function as a 
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foundational data model for computational systems. Another area of interest lies 

in adapting the framework for Retrieval-Augmented Generation (RAG) and con-

versational systems, potentially enabling these systems to produce more contex-

tually relevant and coherent responses. The model could also be refined to sup-

port semantic search engines, allowing for more efficient retrieval of specific ar-

guments or perspectives. Future research might also expand the framework to 

include multimodal data, such as visual or auditory inputs, and explore how argu-

ments evolve over time, adding a temporal dimension to the analysis. 

5.4 Broader Computational Applications 
The flexibility and adaptability of the framework suggest its potential for broader 

computational applications. The model’s representation of argument structures 

and semantics could support tools for summarizing and evaluating discourse, 

providing concise overviews of complex debates. It might inform conversational 

systems designed to offer meaningful and informed interactions or enhance se-

mantic search engines for locating relevant arguments more efficiently. In deci-

sion-making contexts, the framework could aid stakeholders by summarizing ar-

gument clusters and offering evidence-based recommendations, which could 

streamline processes in areas like policy-making and legal reasoning. Addition-

ally, integrating the model into public communication platforms could assist in 

moderating discourse by detecting, clustering, and retrieving arguments, promot-

ing balanced engagement with complex issues. 

5.5 Limitations 
This study’s findings should be considered in light of several limitations. The reli-

ance on synthetic datasets may not fully reflect the complexities of natural dis-

course, potentially limiting the generalizability of the results. Moreover, the inte-

gration of advanced embeddings and graph structures entails significant compu-

tational demands, which could pose challenges for scalability, particularly in real-

time applications. Additionally, the framework’s performance across varied argu-

mentative environments has not yet been thoroughly validated, indicating the 

need for further exploration in diverse contexts. 
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5.6 Final Reflections 
This study aimed to explore ways to integrate structural and semantic insights 

into modeling argumentative discourse, building on established methodologies 

and addressing both theoretical and practical considerations. The findings high-

light the potential for enriched argumentation graphs to support discourse analy-

sis, debate evaluation, and decision-support systems. Future work will focus on 

refining and expanding the framework, with the hope of contributing to a deeper 

understanding of argumentative interactions and their applications across various 

fields. 
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