

Requirements Engineering
Master Digital Science

Stefan Bente, Fabian Krampe

© TH Cologne

Reference
Pre-Version 0.1, translated by Deepl Pro
from German, NOT YET POST-EDITED

This quick reference is intended to serve as a "cheat sheet" in everyday requirements engineer-
ing work. The module content of the Master course “Requirements Engineering” is summarized
here in compact form.

The individual chapters are structured according to a similar scheme throughout:

• Glossary / clarification of terms

• Templates

• Common procedures, techniques, and methods (with recommendations)

• Reference to literature for details that have no place in the quick reference guide

Content

0 Introduction and overview .. 3

1 Identification of goals and system context ... 5

2 Survey techniques, personas, scenarios ... 10

3 Technical glossary / Technical data model .. 22

4 Functional requirements .. 23

5 Non-functional requirements .. 27

6 Prioritization and conflict resolution ... 29

7 Use Cases ... 35

8 Quality assurance .. 38

9 Creating an agile backlog .. 40

10 Appendix: Literature ... 43

0 Introduction and overview
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 2 © TH Cologne

0 Introduction and overview
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 3 © TH Cologne

0 Introduction and overview

The following pragmatic process model is the base of this course. Use it as a guideline and adapt
it to the circumstances or your particular project.

0 Introduction and overview
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 4 © TH Cologne

0.1 Glossary of terms for basic documents

You will encounter the following documents during the requirements gathering and implementa-
tion phases of a project. With the content of this course, you will be able to make contributions to
these documents.

Term Definition Do you need for ...

Statement of
work

Functional
Specification

(German:
Lastenheft)

Created by the client.

Contains the totality of requirements
for deliveries and services of a con-
tractor (system vision, system goals,
functions and qualities, context as-
pects).

Summarizes all requirements for an
IT system.

With the methods in this document,
you cover the essential part of the
specification creation.

The specifications form the basis for
a tender.

Scope State-
ment

Technical
Specification

(German:
Pflichtenheft)

Specification prepared by the con-
tractor.

Describes the implementation of the
specifications given by the client, the
architecture and planned details of
the realization.

Forms the contractor's response to
the statement of work.

0.1.1 Proposal for structure of a statement of work

• Introduction

o Problem description

o System context

o Stakeholder overview

o System goals

• Product requirements

o Personas

o Scenarios

o Functional requirements

• Use Cases

• Professional system context

o Business processes, inci-

dents

o Business properties

o Further technical framework

• Technical system context

o HW and SW configuration

o Interfaces to other systems

o Other technical conditions

• Development framework

o Development process model

o Development tools

• Time and cost frame

o Milestones

• Directories

o Reference documents

0.1.2 Further reading

• Pohl, 2008, pp. 232-236 and 251-257.

• Rupp, 2014, p. 36-39

• Schienmann, 200, pp. 141-148

• Weit e.V. (2006), esp. pp. 1-61

1 Identification of goals and system context
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 5 © TH Cologne

1 Identification of goals and system context

The system context describes aspects of the environment that have a relevant relationship to
the system. The system context includes requirements sources, such as documents, operative
systems, and stakeholders that can be used for requirements elicitation. Stakeholder goals
serve as an initial description of intended usage practices of the system. They can be used to
verify the relevance and completeness of the requirements.

1.1 Glossary / Clarification of terms

Term Definition Do you need for ...

System
context

Part of the environment of a system
that is relevant to the definition and
understanding of the requirements of
the system under consideration.

Identify sources of requirements and
avoid misleading requirements.

Stakeholder Person or organization that has direct
influence on the requirements of the
system under consideration, and/or
an interest in the system.

Important source of system context,
goals, and requirements.

Goal Intentional description of a character-
istic feature of the system to be devel-
oped or the associated development
process.

Creates common system under-
standing.

Requirements serve to achieve this
goal.

1.2 General approach

• Identify and document stakeholders (stakeholder template)

o Classify stakeholders (influence/motivation matrix, see chap. 1.3.1)

o Derive measures for dealing with individual stakeholders

o Survey stakeholders (interviews)

• Survey the actual situation in a non-judgmental way, note problems, no solutions

o Evaluate actual situation, identify causes

• Derive goals and assign them to the stakeholders

o Refine and document goals (goal template, 7 rules)

• Define system context

1.2.1 Challenges and pitfalls

• The system context usually cannot be completely specified at the beginning. The system

boundary needs be clearly defined only at the end of the requirements elicitation process.

Therefore, do not invest too much effort in the initial system context boundaries.

• Forgotten stakeholders result in missing requirements. Therefore, pay special attention

to identifying stakeholders.

• Conflicting goals between stakeholders are often not immediately visible.

1 Identification of goals and system context
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 6 © TH Cologne

1.3 Stakeholder

1.3.1 Templates and stencils

Test questions for stakeholder identifica-
tion

The following questions will help you compile
your stakeholder lists.

1 Identification of goals and system context
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 7 © TH Cologne

• Who are the users of the system?

• Who is the customer of the system?

• Who will maintain the new system?

• Who else is affected by the outputs of

the system?

• Do other people or organizations ex-

ist that are interested in the system?

• Who will evaluate / approve if / when

the system will be delivered or de-

ployed?

Stakeholder categorization

1.3.2 Investigation techniques / methods: stakeholder interview

Planning:

• As a basis, e.g., Kaiser (2014).

• Develop interview objective and gather rough information about the stakeholder

• Create interview guide

• Distribute roles (interviewer, protocolist,...)

1 Identification of goals and system context
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 8 © TH Cologne

Interview Guide:

• Introduction:

o Introduce yourself or the team

o State the goals of the interview

o Motivate the stakeholder to speak and respond freely.

• Main part:

o What is your role related to the product?

o What are your personal expectations for this project?

o Do you have any concerns / worries related to the project? If yes, what are they?

o What should this product or service be/provide?

o What is (not) to be achieved with the new system?

o How would you personally define the success of this project?

o Which processes are executed, and how?

o What problems occur during the execution of processes?

o Are there any rules and regulations that need to be taken into account?

o How should the system be used?

o What tools / methods are used to perform specific tasks?

o Is there any technology that should be applied / incorporated?

• Conclusion:

o Ask about other possible stakeholders

o Clarify further collaboration (e.g., "How would you like to be involved in the project

and what is the best way to reach you?")

Follow-up:

• Provide the stakeholder with the transcript of the interview

• Get confirmation to resolve any misunderstandings (review).

1.4 System context

1 Identification of goals and system context
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 9 © TH Cologne

1.5 Targets

1.5.1 Seven rules for target definition (after Pohl, 2008)

1. Formulate goals briefly and concisely, no filler words, no nested sentences

2. Use active formulations, as the actor must be named here.

• Not: The duration of the reporting process is to be halved compared to the current

situation.

• But: Clerks can create reports in half the time as before.

3. Formulate verifiable goals.

4. If your goal is not verifiable, break it down into verifiable subgoals.

5. Formulate the added value of the goal (what benefit will it achieve?).

6. Provide a rationale for the goal.

7. Avoid solution approaches.

1.6 Further reading

• Broadbent & Kitzis, 2004, pp. 51-55.

• Kaiser, Robert, 2014, Qualitative Expert Interviews: Conceptual foundations and practical

implementation. Springer-Verlag1 .

• Leffingwell, 2003, pp. 43-57.

• Pohl, 2008, pp. 89-108

• Pohl, 2011, pp. 21-32

• Rupp, 2014, pp. 62-77

1 Available as an electronic resource in the university library

2 Survey techniques, personas, scenarios
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 10 © TH Cologne

2 Survey techniques, personas, scenarios

2.1 Survey methods

2.1.1 Glossary / Clarification of terms / Advantages and disadvantages

D
is

a
d

v
a

n
ta

g
e

s

•

W
o
rk

s
 o

n
ly

 w
it
h
 s

ta
k
e
h

o
ld

-

e
rs

 w
h
o
 a

re
 a

w
a
re

 o
f

th
e

re
q
u
ir
e

m
e

n
ts

 a
n

d
 c

a
n
 v

e
r-

b
a
liz

e
 t
h

o
u
g

h
ts

•

Q
u
a
lit

y
 o

f
a
n
s
w

e
rs

s
tr

o
n
g
ly

 d
e
p
e

n
d
 o

n
 t

h
e

q
u
a

lit
y
 o

f
th

e
 q

u
e
s
ti
o

n
s

•

N
o
t
s
u
it
a
b

le
 w

it
h

 m
a

n
y
 p

o
-

te
n
ti
a
l
c
h
a
n

g
e
s

•

G
o
o
d
 d

o
c
u
m

e
n
ta

ti
o

n
 /

s
tr

u
c
tu

re
 o

f
th

e
 l
e
g

a
c
y

s
y
s
te

m
 i
s
 a

 p
re

re
q
u

is
it
e

•

U
n
d
e
r

c
e
rt

a
in

 c
ir
c
u
m

-

s
ta

n
c
e
s
,
e
rr

o
rs

 a
re

 a
ls

o

tr
a
n
s
fe

rr
e
d

•

L
e
a
d
s
 t

o
 u

n
d
e
ta

ile
d
 /
 u

n
-

s
tr

u
c
tu

re
d
 r

e
q

u
ir
e

m
e
n
ts

•

S
ta

k
e
h

o
ld

e
r

c
o
lla

b
o
ra

ti
o

n
 /

a
c
c
e
p
ta

n
c
e
 c

e
n
tr

a
l
to

 s
u
c
-

c
e
s
s

•

D
o
e
s
 n

o
t
fi
t
in

to
 e

v
e
ry

 c
o
r-

p
o
ra

te
 c

u
lt
u
re

•

S
ta

k
e
h

o
ld

e
rs

 m
ig

h
t

fe
e

l

m
o
n

it
o
re

d
 a

n
d
 t
h

e
re

fo
re

d
is

to
rt

 t
h
e
 p

ro
c
e
s
s

•

N
o
t
a

p
p
lic

a
b

le
 f

o
r

n
e

w
 d

e
-

v
e
lo

p
m

e
n

ts

A
d

v
a

n
ta

g
e

s

•

T
a
rg

e
te

d
 q

u
e
s
ti
o

n
in

g

p
o
s
s
ib

le

•

R
e
q
u

ir
e
m

e
n
ts

 d
e
te

r-

m
in

a
ti
o
n
 c

a
n
 b

e
 s

tr
u
c
-

tu
re

d
 w

e
ll,

 r
e
s
u

lt
s
 c

a
n

b
e
 c

o
m

p
a
re

d
 w

e
ll

•

O
v
e
rv

ie
w

 o
f
fu

n
c
ti
o
n
-

a
lit

ie
s
 o

f
th

e
 o

ld
 s

y
s
-

te
m

 =
>

 c
o
m

p
le

te
n
e
s
s

o
f
th

e
 n

e
w

 s
y
s
te

m

•

R
e
u
s
e
 s

o
lu

ti
o
n
s
 a

n
d

e
x
p
e
ri
e

n
c
e
 =

>
 s

a
v
e

ti
m

e
 a

n
d
 r

e
d

u
c
e
 c

o
s
ts

•

N
e
w

,
in

n
o
v
a
ti
v
e
 i
d

e
a
s

•

H
e
lp

s
 b

re
a
k
 d

o
w

n

th
o
u

g
h
t

p
a
tt

e
rn

s

•

S
o
m

e
ti
m

e
s
 g

iv
e
s
 u

n
-

u
s
u
a
l
id

e
a
s

•

R
e
c
o
g
n

it
io

n
 o

f
in

e
ff

i-

c
ie

n
t

p
ro

c
e
s
s
e
s

th
ro

u
g

h
 e

x
te

rn
a
l
v
ie

w

•

S
u
it
a
b

le
 i
f
s
ta

k
e

h
o

ld
-

e
rs

 c
a
n
n
o
t

e
x
p
re

s
s

th
e
ir
 k

n
o
w

-h
o
w

 l
in

-

g
u
is

ti
c
a
lly

D
o

 y
o

u
 n

e
e

d
 f

o
r

..
.

In
it
ia

l
s
u
rv

e
y
 o

f
"o

b
v
i-

o
u
s
"

re
q
u
ir

e
m

e
n
ts

,

re
c
o
g
n
it
io

n
 o

f
p

e
rf

o
r-

m
a
n

c
e
 f

a
c
to

rs
 (

s
e
e

K
a
n

o
 m

o
d
e

l
in

 c
h
a

p
.

6
.2

.2
,
S

.
2
9
)

Id
e
n
ti
fy

 o
r

s
u
p

p
le

-

m
e
n
t
re

q
u

ir
e
m

e
n
ts

w
h
e
n
 s

ta
k
e
h
o

ld
e
rs

a
re

 n
o
t

a
v
a
ila

b
le

 t
o

b
e
 i
n
te

rv
ie

w
e
d

B
re

a
k
in

g
 u

p
 r

ig
id

th
o
u

g
h
t

p
a
tt

e
rn

s
,
re

c
-

o
g
n

iz
in

g
 e

n
th

u
s
ia

s
m

fa
c
to

rs
 (

s
e
e
 K

a
n
o

m
o
d
e

l)

D
o
c
u
m

e
n
ta

ti
o

n
 o

f
re

-

q
u
ir
e

m
e
n

ts
 t
h
a
t

o
ft

e
n

fa
ll

b
y
 t
h

e
 w

a
y
s
id

e

d
u
ri
n

g
 w

ri
tt

e
n
 e

la
b
o
-

ra
ti
o
n

 b
e
c
a

u
s
e
 t
h

e
y

a
re

 t
a
k
e
n

 f
o
r

g
ra

n
te

d

(b
a
s
ic

 f
a
c
to

rs
,
s
e

e

K
a
n

o
)

D
e

fi
n

it
io

n

D
e
te

rm
in

in
g

 t
h
e

w
is

h
e
s
 a

n
d
 n

e
e
d
s
 o

f

th
e
 s

ta
k
e

h
o
ld

e
rs

 b
y

a
s
k
in

g
 s

p
e
c
if
ic

 q
u
e
s
-

ti
o
n
s

R
e
q
u

ir
e
m

e
n
ts

 a
n
a

ly
-

s
is

 b
a
s
e
d
 o

n
 a

n
 e

x
-

is
ti
n

g
 s

y
s
te

m
,
d

o
c
u
-

m
e
n
ts

 o
r

o
th

e
r

a
rt

i-

fa
c
ts

T
e
c
h
n
iq

u
e
s
 f

o
r

u
s
in

g

im
a

g
in

a
ti
o
n
 a

n
d

 c
re

-

a
ti
v
it
y
 (

in
 d

e
te

rm
in

-

in
g
 r

e
q
u

ir
e
m

e
n
ts

).

Id
e
n
ti
fy

 a
n
d
 a

n
a

ly
z
e

re
q
u
ir
e

m
e

n
ts

 b
y
 o

b
-

s
e
rv

in
g
 /
 d

o
c
u
m

e
n
t-

in
g
 t

h
e
 s

te
p
s
 o

f

s
ta

k
e
h
o
ld

e
rs

 a
n

d
 p

o
-

te
n
ti
a
l
u
s
e
rs

.

T
e
c

h
n

iq
u

e
s

In
te

rv
ie

w
in

g

te
c
h

n
iq

u
e

s

D
o

c
u

m
e

n
t-

c
e
n

te
re

d
 /

a
rt

if
a

c
t-

b
a
s

e
d

 t
e

c
h

-

n
iq

u
e
s

C
re

a
ti

v
it

y

te
c
h

n
iq

u
e

s

O
b

s
e

rv
a
ti

o
n

te
c
h

n
iq

u
e

s

2 Survey techniques, personas, scenarios
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 11 © TH Cologne

2.1.2 Interviewing techniques

• Interview: Guided interview based on a question guide. Useful for questioning individual

experts specifically and in depth. It is essential to secure the results.

o Prepare list of questions, but allow flexibility. See guidance for stakeholder inter-

views (chap. 1.3.2 on p. 2).

o Respect the opinion or knowledge of the interview partner!

• (Online) survey Through a survey, many potential users can be reached with little effort.

In addition, the respondents do not feel pressured by a real person, as is the case with an

interview.

o Careful preparation with test runs necessary.

o Important: Free text fields for naming aspects not previously considered.

• Self-writing: Selected stakeholders document their fields of activity as well as their re-

quirements, suggestions for change and optimization.

• On-Site Customer: A stakeholder is available to the development team in an advisory

capacity during the concept and implementation phases.

2.1.3 Document-centric / artifact-based techniques.

• System archaeology: Functional requirements are derived from legacy systems, for ex-

ample by analyzing user documentation, analyzing user interfaces, analyzing source code

etc.

• Perspective-based reading: Existing specification documents are specifically evaluated

from the perspective of a stakeholder / potential user to extract functional requirements.

2.1.4 Creativity techniques

• Brainstorming: In a group of 5-10 people, ideas are collected in a given time. Each idea

is written down or posted for all to see, without comment from the creator or the other

participants. The method works very well with a wide variety of stakeholders. A wide range

of ideas is represented. However, care should be taken to ensure that the mood is positive

and that there is no early criticism.

• Brainstorming Paradox: This involves collecting ideas that are not intended to be

achieved. This is especially useful when the group is at a "knot" and there is a mood of

lack of ideas, or when there is strong dissent in the group. The deliberately negative per-

spective makes it easier to focus on the desired solutions.

• 6-3-5 Method: 6 people create 3 ideas each at the beginning and write them on a piece

of paper. The slips of paper are then passed on to the next person (clockwise). They now

write down an extension or a supplementary, new idea for each idea. The whole thing is

repeated 5 times, so that each participant has considered each idea once. Each round

has a given time frame. This method works very well with difficult group dynamics because

the discussion is in writing. The method produces fewer ideas than brainstorming, but they

are usually more accurate. (Depending on the size of the group, adjustments are possible,

e.g. 4-2-3).

2 Survey techniques, personas, scenarios
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 12 © TH Cologne

• Walt Disney method: The group moves one after the other into three different rooms,

each representing competing views: 1) Visionary, 2) Realist, 3) Critic. There, all partici-

pants* should adopt the "spirit" of the room. The respective rooms should transport the

view through their furnishings (e.g. realist = sober furnishings).

• 6-hats method: With this method, different views of the problem / project are collected.

Each stakeholder is assigned a view and must adopt it. These views cover a range of

opinions from "critical" to "analytical" to "positive". The stakeholders have to get involved

with this method, as they have to put their own opinions in the background.

o blue: organizing, moderating think-

ing, overview, processes,

Big Picture ("the blue sky")

o white: analytical thinking, focus on

facts and achievable ("the white

sheet")

o red: emotional thinking, feeling,

concentration on feelings and opin-

ions ("fire and warmth")

o black: critical thinking, risk assess-

ment, problems, skepticism, criti-

cism and fears ("doom and gloom",

Advocatus Diaboli)

o yellow: unconditionally optimistic

thinking, best-case scenario ("sun-

shine")

o green: creative, associative thinking, new ideas ("green meadow")

2.1.5 Observation techniques

• Field observation: The requirements investigators play "fly on the wall" and observe /

log the existing workflows of the potential users. By observing the users, their behavior

in the respective context can be analyzed and understood particularly well. In addition,

the users are usually highly available, as they can pursue their normal tasks. Further-

more, the observers may notice aspects that the users had not even thought of because

they were obvious to them.

o How do users react under time pressure?

o What influence do external aspects such as light, noise, other users have?

o How do users work when they are distracted?

• Apprenticing: The requirements investigator is "trained" over a limited period of time for

the operational activities of the potential users (apprentice). Outside the apprenticing pro-

cess, the procedures are then documented and analyzed.

2.1.6 Further reading

• Bono, E. de. (1989).

• Gürtler, Meyer, 2013

• Pohl, 2008, pp. 32-41

2 Survey techniques, personas, scenarios
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 13 © TH Cologne

• Rupp, 2014, pp. 80-106

• Schienmann, 2001, pp. 203-213

2.2 Classification according to Kano method

The Kano model helps to classify requirements. The criterion used here is the satisfaction of
stakeholders and potential users, or more precisely: how they would perceive and evaluate the
respective property.

For this purpose, the requirements are divided into three characteristic categories (basic, perfor-
mance and enthusiasm factors). This classification can then serve as the basis or input for a
requirements prioritization.

The classification according to Kano factors becomes important later when functional require-
ments ("1-set requirements") are established (see chapter 4). You can then group them accord-
ing to Kano and use them later for prioritization (see also Chapter XXX).

2 Survey techniques, personas, scenarios
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 14 © TH Cologne

2.2.1 Glossary / Clarification of terms

Term Definition Do you need for ...

Base factor System property that is
taken for granted

Must be met to guarantee satisfaction.

However, it is often not explicitly mentioned by
stakeholders because they take it for granted.
Therefore a potential source of misunderstanding
and conflict during implementation.

Power factor Consciously and explicitly
required feature of the
system

Performance factors usually form the main part of
a requirement specification.

Enthusiasm
factor

System property that is
not expected, but is per-
ceived as pleasant and
useful when present.

Increases stakeholder acceptance of the system
by providing unexpected features that are per-
ceived as positive.

2.2.2 Which investigation techniques (see chap. 2.1 on p. 10) provide which Kano factors?

Base factors Performance factors Enthusiasm factors

Observation techniques

• Field observation

• Apprenticing

Document-centered /
artifact-based techniques

• System Archaeology

• Perspective-based learn-

ing

Interviewing techniques

• Self-recording on the part

of the stakeholder

• On-Site Customer

• Interviews

• Workshops

(but also all other techniques)

Creativity techniques

• 6 hats method

• 6-3-5 Method

• Walt Disney method

• ...

2 Survey techniques, personas, scenarios
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 15 © TH Cologne

2.2.3 Help for Kano classification

Although the definition of the Kano factors is intuitively understandable, the assignment of a con-
crete requirement to a factor often causes problems. Here it helps to ask the stakeholder (or
oneself, as a thought experiment) two questions and to classify the answers according to the
following matrix.

2.2.4 Further reading

• Gürtler, Meyer; 2013

• Pohl 2008, pp. 32-41

• Rupp 2014, pp. 80-106

• Schienmann 2001, pp. 203-2013

Functional
question:
What if
the feature is
present
?

Dysfunctional question: What if the feature is missing?

2 Survey techniques, personas, scenarios
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 16 © TH Cologne

2.3 Personas

Personas are fictitious people who represent the typical users in a target group. The persona
should represent the important characteristics of the target group. Personas are created in
narrative form and are based on real user stakeholders.

2.3.1 Glossary / Clarification of terms

Term Definition Do you need for ...

Persona Text-based archetypes of
real users, represents char-
acteristics of a stakeholder.

Identify possible functionalities for the system
to be created. Putting yourself in the shoes of
the user.

primary
Persona

Persona in the focus of sys-
tem design.

Prioritization by identifying the "important"
stakeholders that feed into the persona. Oppo-
site are secondary personas.

2.3.2 Templates: Description of personas

Checklist:

• Photo

• Name, age

• Education

• Job

• Family

• Disabilities

• Technology

• Motivation, goals, needs

• Expectations

• Behavior

• Working environment

• Skills

Max. 1 page, relevant properties vary depending on context.

With personas, there is a danger that creators are too strongly guided by their own ideas. It is
therefore important that the designer or developer recognizes that they are not developing for
themselves.

2 Survey techniques, personas, scenarios
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 17 © TH Cologne

2.3.3 How do I create personas?

Depending on the context and the task at hand, various options are available. In some cases, a
clever combination is the most profitable option. For example, in the case of demographic ques-
tions, market research in combination with an online survey is the best option in most cases.

Suitable techniques are interviewing and observation techniques (see also the description of sur-
vey techniques in chap. 2.1 on p. 10):

• Interview

o Interviews are suitable to better understand requirements, behavior and needs of

users and influences of the environment

o Usually last 30-60 min

o Hold interview, if possible, in person's work environment to gain insight into user's

activities through observation

o Respect the opinion or knowledge of the interview partner!

o W-questions: Who, Where, What, When, How, Why, From where?

• Survey

• Field observation of users (in the real context of use).

• Market research

o Through a market research, many parameters can be determined in advance with

a low effort. Through a combination with another determination technique, ad-

vantages can be drawn from both.

o A pure market research for the creation only makes sense if the personas are en-

riched in time by well-founded project-related data.

2.3.4 Further reading

Calabria, 2004

Cooper 1999, pp. 123-148

Pohl 2008, pp. 127-138

Rupp 2014, p. 210-211

2 Survey techniques, personas, scenarios
Requirements Engineering (Master Digital Sciences) | © S. Bente, F. Krampe - TH Köln

Page 18 © TH Cologne

2.4 Scenarios

Scenarios describe situations in which people interact with a system (story line). These situations
have a clearly defined context. On the one hand, scenarios serve to informally record require-
ments for a system and, on the other hand, to evaluate a system with respect to formalized goals
and requirements.

Scenarios are based on the previously created personas (see chap. 0) and can refer to the current
situation (ACTUAL scenario) or to the future (improved) situation (TARGET scenario). Scenarios
focus on the activities of people and less on concrete interactions. In addition, these include the
usage environment of the application or system, the duration of use, the probability of interruption,
and the use of other applications.

2.4.1 Glossary / Clarification of terms

Term Definition Do you need for ...

Scenario Narrative, informal description of a situ-
ation in which personas interact in the
system in the particular context of use.

Recording of typical usage sequences
(e.g. as a result of survey techniques
from chap. 2.1), without initially restric-
ting oneself by too many formalisms

Context of
use

Action space and environment of the
user (tasks, physical and social environ-
ment, hardware and software, consum-
ables, etc.)

Reduction to the most important details
of the interaction between user and
system

2.4.2 Further reading

• Calabria, 2004

• Cooper 1999, pp. 123-148

• Pohl 2008, pp. 127-138

• Rupp 2014, p. 210-211

2.4.3 Scenario types

Templates are not very useful for scenarios, because they do not have a formal framework (cer-
tain attributes). However, one can distinguish the different scenarios according to their type, as
shown below. Not all scenario types are equally important (are used equally often).

Categorization Type Brief description
Usage
frequency for SW

requirements
is used for Example

Normal
vs.
Exception

Main scenario
(standard scenario)

Normal way to fulfill
the goal

always

Standard for use
cases, rather as type
than instance scenario.
Can be both interac-
tion (more common
case) and system sce-
nario.

See example for chap. 7 (Use Cases) on
p. 35

Alternative scenario
Alternative way to ful-
fill the goal

mostly Standard for use cases

Exceptional scena-
rio

Target is not met mostly Standard for use cases

Positive
vs.
Negative

positive scenario

Sequence of interac-
tions leading to the
fulfillment of a goal

always
Very similar to the
main scenario

See example for chap. 7 (Use Cases) on
p. 35

negative scenario
Interaction sequence
that leads to the non-
fulfillment of a goal

mostly
Game type of the ex-
ceptional scenario

Abuse scenario
Describes an un-
wanted use of the
system

sometimes
Game type of the ex-
ceptional scenario

Concrete
vs.
Abstract

Instance scenario

Concrete interactions
with concrete inputs
and outputs between
concrete persons
and/or systems

always

Very concrete game
type of a scenario.
Can be used well to-
gether with detailed
persona, i.e. early in
the requirements iden-
tification process.

Karl wants to drive to Potsdamer Platz 1 in
Berlin. Karl uses the navigation system of
his VW Golf with the license plate "E-IS-
12". Karl selects "Enter destination" in the
main menu, enters "Potsdamer Platz 1 in
Berlin" as destination and presses the but-
ton "Determine route"... (Pohl 2008)

Type scenario

Interactions between
types of actors
through types of in-
puts and outputs

always

Is rather the abstrac-
tion level that is used in
use cases (i.e. some-
what later in the re-
quirements elicitation
process).

The driver enters the destination address
into his navigation system. The system
gives the feedback that the route calcula-
tion has been made.

Categorization Type Brief description
Usage
frequency for SW

requirements
is used for Example

Interaction
vs.
system

System internal
scenarios
(Type A)

Internal system in-
teractions in the
form of interaction
sequences be-
tween system com-
ponents

mostly

Is always useful
when a very tech-
nical system is to be
described.

Corresponds to a
white-box view of
the system.

The "Navigation Control" component re-
quests the GPS coordinates from the "De-
termine GPS Location" component. The
"Determine GPS location" component
transmits the coordinates. The "Navigation
Control" component calls the "Screen Out-
put" component with the current position as
well as the destination. The "Screen Input"
component passes the route parameters to
the "Navigation Control" component, which
uses them to determine the final route.
(Pohl 2008).

Interaction scena-
rios (type B)

Interactions be-
tween system and
system users
(stakeholders and
systems in con-
text).

always

Black-box view of
the system being de-
scribed.

 The "standard case"
of a scenario.

Context scenarios
(type C)

Extension of type B
with additional in-
teractions and in-
formation in context

mostly

If context information
is available, then
useful, otherwise ra-
ther type B.

The driver wants to reach a destination that
is outside the map material stored in the
navigation system (system). Since the nav-
igation system cannot guide the driver
without the map material, the driver de-
cides to have a route calculation performed
by his mobile operator. [...] The driver en-
ters the start and destination location as
well as the route parameters (fastest route)
in the user dialog on the cell phone [...].
(Pohl 2008)

Categorization Type Brief description
Usage
frequency for SW

requirements
is used for Example

Descriptive vs.
Explanatory

explanatory
scenario

Justification and ex-
planation of interac-
tions

sometimes

Mixes benefits and
goals into the sce-
nario.

Explanations can also
be usefully mixed into
use cases if the expla-
nation portion does not
get out of hand.

The distance between the vehicles contin-
ues to decrease. Since the vehicle is trav-
eling across the highway at high speed (>
90 km/h!) and therefore the speed should
be reduced before a possible evasive ma-
neuver, the on-board computer initiates
automatic emergency braking to avoid a
rear-end collision. (Pohl 2008)

descriptive
scenario

descriptive represen-
tation of the interac-
tions

always
The standard case of
scenarios

exploratory
scenario

Alternative solution
and operation options

sometimes

Has a strong "brain-
storming character",
fits more into the early
phase of requirements
identification

Karl wants to drive his car to a destination
using a navigation system. The first ques-
tion is whether the starting point of the jour-
ney is always the current position of the ve-
hicle, or whether Karl selects the starting
point himself. Automatic selection of the
starting point avoids additional user inter-
action and thus supports fast navigation.
The input of the starting point would allow
to calculate routes that do not have the cur-
rent position of the vehicle as starting point.
[...] (Pohl 2008)

3 Business glossary / Business data model
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 22 © TH Cologne

3 Business glossary / Business data model

The goal is to form a common vocabulary between all project participants and to create a uniform
data model that represents the application domain to be mapped. This facilitates communication
with the stakeholders and prevents misunderstandings due to missing definitions.

3.1 Glossary / Clarification of terms

Term Definition Do you need for ...

Technical
glossary

Common vocabulary defined be-
tween participants of a project.

the avoidance of conflicts that may
arise from conflicting interpretations.

Business ob-
ject

An element that provides professional
value to a project.

the identification of the basic ele-
ments that exist in an application do-
main

Business data
model

(also:
domain model)

Describes an implementation-inde-
pendent model which

reflects objects of the real project con-
text (usually in the form of a UML
class diagram)

interdisciplinary communication be-
tween all project participants

3.2 Procedure

The technical glossary is being created and expanded through discussions with stakeholders (see
Chap. 1.3 on p. 6), domain experts, and research in other sources such as internal documentation
and technical literature.

Caution. A common mistake is to make assumptions without consulting the stakeholders, as-
suming sufficient knowledge of the domain.

Rule of thumb: If you don't know the domain, you underestimate its complexity.

3.2.1 Method: noun analysis for filling the glossary from technical texts

1. mark all nouns in the requirements.
2. Clean up the created raw list

a. Delete repetitions.
b. Remove synonyms (make sure they are really synonyms!)
c. Delete noun verbs (be careful with words like "order" - that's a business object!)
d. Delete nouns that are only synonyms for conjunctions or verbs.
e. Delete all sentences that do not describe business objects.

f. The system to be modeled does not form a business object.

g. Delete information on subsequent implementation at the technical level.

h. Delete labels for e.g. optionality.

3. Each marked noun forms a business object.

4. Document the identified business objects in the form of a glossary.

o Creating the domain-oriented data model from a glossary

3.3 Business data model / domain model

Based on the determined business objects, a domain model can be created for the domain.

4 Functional requirements
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 23 © TH Cologne

In addition to the glossary, the domain-oriented data model shows how a term / business object
is related to other terms. The implementation as a simple UML class diagram is easy to under-
stand even for IT laymen!

3.3.1 Method: Business data model as simple UML class diagram

Rule: Only the following relationships, no methods in the classes, little to no attributes.

3.3.2 Example

3.4 Further reading

• Ebert, 2014, p.204-206

• Evans, 2003, p25-55

• Pohl and Rupp, 2011, pp. 85-87; 95-99.

• Rupp 2014, pp. 207-208; 222-224

4 Functional requirements

Functional requirements describe the desired functionality of a system, its behavior and its data.
These can often be interpreted differently. To counteract this problem, potential linguistic ambi-
guities should be eliminated and requirements should be formulated unambiguously using sen-
tence templates.

Term Definition

Delivery Delivery of a supplier to be placed in storage, consisting of individual delivery
items

Article Description of a delivered object

Delivery item Component of a delivery, consisting of item and quantity

4 Functional requirements
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 24 © TH Cologne

4.1 Glossary / Clarification of terms

Term Definition Do you need for ...

Functional re-
quirement

Describes desired functionality of a
system, its data and / or behavior

Condenses the requirements for an
IT system into a set of compact (1
set) requirements that can be easily
prioritized and transferred into a pro-
ject plan.

Sentence
templates

Blueprint for the syntactic structure of
a single request

Helps to formulate functional require-
ments without ambiguities, ambigui-
ties and contradictions.

4.2 Checking and cleaning up natural language requirements

First, all potential ambiguities should be eliminated. Then, by means of a sentence template, the
requirement is formalized according to a uniform scheme.

Testing What is it about? Typically Example of possible problems

1) Nominali-
zation

A (often long lasting) pro-
cess is turned into a (one-
time) event.

As a result, an operation
becomes an event, and
much information relevant
to the operation is lost.

• the integration

• the test

• the decrease

• the transfer

• the display

• the user

guidance

• The confirma-

tion

"The system allows logging of re-
quests.

• who logs?

• when is logging done?

• what is logged?

• to what end?

• in compliance with which

rules?

2) Universal
quantifiers

Universal quantifiers = in-
formation about frequen-
cies.

• combine a set of ob-

jects into a group

• make statement about

their behavior

• never

• always

• no

• any

• all

• nothing

• implicit all-

quantors

"The user receives a statistical
analysis of all request data."

• Any user (implicit universal

quantifier)?

• All request data?

• Always (implicitly!)?

3) Fre-
quently
used gene-
ric nouns

Commonly used nouns
whose meaning is "over-
loaded".

Further information is re-
quired to specify them un-
ambiguously.

• the user

• the system

• the message

• the data

• the function

"For form queries, field conven-
tions must be ensured by plausibil-
ities in the form."

• Which form?

• Which field conventions?

• What plausibilities?

4) Incomple-
tely spe-
cified pro-
cess words

Some process words
(verbs) require more infor-
mation to be fully speci-
fied.

Anything that
doesn't hold up af-
ter W questions:
Who? What?
What for? Why?
When? Where?
How? How much?

"The user enters the login data"

• Where and when is the input?

4 Functional requirements
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 25 © TH Cologne

Testing What is it about? Typically Example of possible problems

5) Incom-
pletely spe-
cified con-
ditions

The requirement contains
a condition that is not fully
specified.

Signal words:

• if ... then

• if

• in the case of

• depending on

"If the user is shown a lock for the
selected record ..."

• What if no lock?

• What if all records are locked?

4.3 Record template for functional requirements

• "must": absolutely belongs to this release

• "should": optional

• "will": "must" for a future release, not now

For this classification, the Kano model can be taken as an aid (see chapter 2.2). The following
applies:

• Basic factors are "must" requirements

• Performance factors can be "must", "should", or "will"

• Enthusiasm factors as well, but for tactical reasons some enthusiasm factors should be

represented at "must"

4 Functional requirements
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 26 © TH Cologne

4.4 Example

Example: from the following output set

The reasons for the request are to be stored when logging the requests.

is done by applying the cleanup rules and using the record template:

In the first processing step | the system | must be capable of |
log each incoming request with the complete data of the request as well as the
timestamp of receipt |.

4.5 Further reading

Pohl 2008, pp. 239-249

Rupp 2014, pp. 159-181

5 Non-functional requirements
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 27 © TH Cologne

5 Non-functional requirements

Non-functional requirements (NFA) include all requirements that cannot be assigned to functional
requirements.

They describe important quality characteristics and boundary conditions of the system to be de-
veloped.

5.1 Glossary / Clarification of terms

Term Definition Do you need for ...

Non-function-
specific require-
ments

Concern the "how"
and not the "what"
of realization

Operational design of the service provision

Quality require-
ments

Determine in which
"quality" the func-
tional requirements
are to be fulfilled

Especially for the description of load behavior and reli-
ability / availability:

Performance

• Response time (min, max, avg) for a transaction

• Throughput

• Capacity (quantity structure)

Reliability

• Availability (%)

• Mean time between failure / Mean time to repair /

Modifiability
Security
Interoperability / Conformity

Technological
requirements

Provide solution
specifications, de-
scribe environment
in which the system
is to be operated

Ensure the conformity of the solution to be created to
the operating environment and the strategic objective
of the organization / company.

5.1 Further reading

• Leffingwell, 2003, pp. 257-269.

• Rupp, 2014, pp. 247-284

• Schienmann, 2001, pp. 132-137

5.2 Classification and examples

The figure overleaf shows the different types of non-functional requirements, each with a short
example.

5 Non-functional requirements
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 28 © TH Cologne

6 Prioritization and conflict resolution
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 29 © TH Cologne

6 Prioritization and conflict resolution

Prioritization is necessary to separate requirements from each other (important and unimportant),
as well as to bring order to a project and ensure project success. These can be realized by ad-
hoc, analytical and agile techniques, depending on the project.

Possible prioritization criteria include:

• Business or strategic value

• Implementation costs

• Interrelation / dependence between requirements

• Risks / costs in the event of development failure

6.1 Glossary / Clarification of terms

Term Definition Do you need for ...

Ad hoc
prioritization

Simple and fast prioritization Large quantities of requirements, pre-pri-
oritization

Analytical pri-
oritization

Prioritization methods on a math-
ematical-analytical basis

Complex systems of criteria for prioritiza-
tion, sound decision-making processes

Agile
Prioritization

Techniques based on team pro-
cesses

Agile development in a cohesive team

6.2 Approaches for prioritization

6.2.1 Ad Hoc Prioritization

• One-criteria classification. A prioritization technique frequently used in practice with

three priority classes

o Mandatory: Urgent requirements

o Optional: No urgent requirements

o Nice-to-have: Additional requirements that do not jeopardize the success of the

system if not taken into account.

• Ranking. Selected stakeholders determine a ranking of requirements with regard to a

specific criterion. This can be done well, e.g., in a workshop with sticky dots.

• Top Ten Technique. Like ranking, but limited to the selection of <n> most important re-

quirements.

• Kano classification. See explanation in previous chapter 6.2.2.

6.2.2 Prioritization according to Kano method

The Kano model was described in chap. 2.2 introduced. It can be used as an aid in prioritization
- see also chapter 4.3:

• Basic factors are "must" requirements

• Performance factors can be "must", "should", or "will"

• Enthusiasm factors as well, but for tactical reasons some enthusiasm factors should be

represented at "must"

6 Prioritization and conflict resolution
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 30 © TH Cologne

6.2.3 Consider-All-Facts with Plus-Minus-Interesting (CAF+PMI).

One collects evaluation criteria, evaluates the impact of the requirement with points between
1 and 6 (CAF) and also determines whether they contribute positively (+), negatively (-) or
neutrally (|) to the evaluation (PMI). This results in a point value for each requirement.

Example: I want to buy a new bicycle. My goals are listed in the first column.

 Requirement 1

"The bike should

cost well under

2000,-- EUR."

Requirement 2

"..."

 Targets Target

priority

(1..6)

PMI PMI

I don't want to limit myself financially
or go into debt because of pur-
chases.

3 + ...

I want to get lots of exercise in the
fresh air and thus become as fit as
possible.

5 | ...

I want to be able to show off to my
friends the things I buy.

1 - ...

I would rather own a few really good
things than buy "throwaway" prod-
ucts frequently.

4 - ...

Total 3 + (0*5) -1 -4 = -2 ...

• Template for CAF+PMI here.

• Complete bike example here.

6.2.4 Analytical prioritization

• Analytical Hierarchy Process (AHP). See freely available template from SCB Associ-

ates: https://www.scbuk.com/AHP%20Template%20SCBUK.xls.

1. Enter requirements in left column (up to 15 in template)

2. Set number of requirements

3. Enter pairwise weighting in matrix (yellow fields)

4. If necessary, observe consistency check (far right)

5. Read prioritization from green table at far right

6.2.5 Agile prioritization

• Buy a Feature: Fits well for agile projects, e.g. to select features for the next release or

sprint. Each requirement gets a price, depending on development cost / business value /

risk / ... This can be determined e.g. with Planning Poker. Participants get play money and

"buy" requirements. They have to form alliances in the process. This creates an orderly

top-N selection.

Rules:

https://ilias.th-koeln.de/goto.php?target=file_1876314_download&client_id=ILIAS_FH_Koeln
https://ilias.th-koeln.de/goto.php?target=file_1876315_download&client_id=ILIAS_FH_Koeln
https://www.scbuk.com/AHP%20Template%20SCBUK.xls

6 Prioritization and conflict resolution
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 31 © TH Cologne

1. No requirement should be able to be bought to a participant alone

2. all participants together should not be able to buy all requirements

3. Participants discuss to put money together for a specific feature

4. Watch discussion and note buy order!

5. Example: Team of 6, each participant 100 € (total: 600 €), features cost 120 €,

130 €, 150 €, 150 €, 200 €, 200 €, 350 € (total 1300 €)

6.2.6 When should you use which technique?

Ad hoc techniques provide a good framework for fast prioritization. A high number of requirements
can be pre-filtered first and then further prioritized using other methods.

6.2.7 Further reading

• Ebert, 2014, pp. 224-229

• Pohl and Rupp, 2011, p. 117-123;

p.132-136

• Rupp, 2014, pp. 482-494, 494-497,

498-501.

6 Prioritization and conflict resolution
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 32 © TH Cologne

6.3 Conflict Management

With a high number of requirements, many stakeholders, and a politically charged environment,
there can be conflicts in prioritization. Often there are underlying conflicts that are not necessarily
factually based and are not immediately apparent. Conflict management helps to identify such a
conflict, to analyze it and to resolve it with appropriate methods.

6.3.1 Glossary / Clarification of terms

6.3.2 Conflict resolution strategies

up to here a re-
quirements
manager can
act

from here on
trained coach
necessary

6 Prioritization and conflict resolution
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 33 © TH Cologne

6 Prioritization and conflict resolution
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 34 © TH Cologne

6.3.3 Further reading

• Ebert, 2014, pp. 224-229

• Pohl and Rupp, 2011, p. 117-123; p.132-136

• Rupp, 2014, pp. 482-494, 494-497, 498-501.

7 Use Cases
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 35 © TH Cologne

7 Use Cases

Use cases are easy to write and read. They are very useful for detailing the functional require-
ments of the system to the extent that they can be implemented by a development team. They
are also very suitable for communication when the requirements and development team do not
know each other (nearshore / offshore development).

7.1 Glossary / Clarification of terms

Term Definition Do you need for ...

Use Case Task field to be supported by the (IT)
system, formulated from the point of view
of one or more users (actuators) and trig-
gered by an actuator.

Detailed requirements definition on
the basis of which the architecture
design and implementation can take
place.

7.2 Template for a single use case

There are many suggestions for use case templates in the literature; this is a minimal one that
has worked well in practice. Extend it where necessary, but you should not omit any fields.

ID Unique identifier of the use case

Name Name of the use case (usually object + verb)

Description Short description of the use case

Trigger actuator Actor that starts the use case; can also be a surrounding system

More actuators Other actors involved, can be possible surrounding systems

Trigger Event(s) that triggers the use case

Precondition Condition to be able to start the use case

Postcondition State after successful execution of the use case

Main scenario Sequence of steps that describes the flow of the use case and
leads to success.

(see also definition "main/alternative/exception scenario" in
chap. 2.4.3 on p. 18)

Alternative scenario Step sequence that deviates from the main scenario, but still
leads to success; describes an exceptional situation

Exceptional scenario "Failure" scenario that does not lead to success (then with its own
postcondition).

7.2.1 Numbering of the scenario steps

• Steps in the main scenario are numbered consecutively from 1. Example: 1, 2, 3, 4, ...

• Alternatives / exceptions to a particular step: corresponding number and "a, b, ...". Exa-

mple: Alternative to step 2: "2a".

• If multiple alternate / exception steps belong to a main scenario step: number in the form

"5a1, 5a2, 5a3" etc.

7 Use Cases
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 36 © TH Cologne

7.3 Example (customer portal of an insurance company for damage reports)

ID KundPort_12

Name Report damage

Description Customer reports damage

Trigger actuator Customer

More actuators Insurance backend claims system

Trigger Customer has a claim, e.g. car accident

Precondition Customer is actually insured with this insurance

Postcondition Damage has been reported to insurance company

Main scenario 1) Customer identifies himself with customer ID and password.

2) Customer enters date and description of damage

3) Portal forwards the damage to backend damage system

4) Backend system confirms receipt

5) Portal sends incoming report to customer via email

Alternative scenario 1a) Customer writes a letter to the insurance company, describing the damage.

2a) Clerk reads the letter and enters the date and description of the damage
into the system instead of the customer (then continue with 3).

4b1) Backend system does not respond

4b2) System sends an email with the damage data to the person responsible
for the backend system, so that he/she ensures the transfer of the data (then
continue with 5)

Exceptional scenario 4c) Customer's insurance coverage is suspended because the premium has
not been paid. Backend system sends corresponding message to the portal.

5c) Portal passes on the rejection of the damage report to the customer

Postcondition in this case: damage is not considered reported.

7.3.1 Checklist: Use Case too big / too small? (after Cockburn p. 57 ff.)

• UC possibly too small? User Happiness Test. "Is the user satisfied after the use case?"

o Ex. for ok: Use case above, damage is reported.

o Example for not ok: Customer sends email with damage report to insurance com-

pany (and this ends the use case). Then processing and feedback on the part of

the insurance company is missing.

• UC possibly too large? Coffee Break Test. "After a UC like this, users take a coffee

break."

o Example for ok: Above UC should be doable in about 10 min.

o Ex. for not ok: If the above UC also included settlement of the claim (which takes

days to weeks).

7 Use Cases
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 37 © TH Cologne

7.3.2 Extract use cases from textual requirements

1. mark verbs
2. syntactic cleanup

a. Striking nouns, resolving auxiliary constructions
b. Delete modal verbs (can, will, would like to, should, must, may)
c. Convert passive to active
d. Use presence, delete tense auxiliary verbs.

3. semantic cleanup
a. Goal and context but without functionality - delete
b. Delete repetitions

4. derivation of the use cases
a. Name: object (singular) + verb (infinitive)
b. Actor: infer from context, always singular

7.4 Overview of use cases with the help of use case diagrams

Relationships between use cases:

7.5 Further reading

Cockburn, 2000, pp. 81-110; 132-138.

Leffingwell, et al. 2003, pp. 147-156.

Pohl and Rupp, 2011, pp. 75-8ß; 91-95.

Rupp, 2014, pp. 217-219

8 Quality assurance
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 38 © TH Cologne

8 Quality assurance

Quality assurance in requirements management serves to detect and eliminate discrepancies
between the elicited requirements and the customer's wishes. The measures applied here can be
divided into constructive and analytical quality assurance.

8.1 Glossary / Clarification of terms

Term Definition Do you need for ...

Constructive qua-
lity assurance

Assists in the creation of high
quality requirements

Quality-assuring working principles dur-
ing requirements determination

Analytical quality
assurance

Verification of the quality of re-
quirements

Testing and improvement of the require-
ment quality after determination

8.2 Quality criteria

8.2.1 ... for requirements in general

Criterion Definition

Correctness Describes without errors the property that the system should fulfill

Completeness Presence of all necessary information

Uniqueness The requirement is precisely formulated and cannot be interpreted
more than once

Consistency The requirement does not contradict itself or other requirements

Validity There is consensus among all stakeholders on the requirement to

Prioritization Requirements are ranked by evaluating the stakeholders

Verifiability The fulfillment of the requirement is verifiable

Traceability The requirement has a unique name (key) and provides all relevant
context information (source, relation to other requirements)

Comprehensibility All involved are able to understand the requirement

Feasibility The requirement is feasible

8.2.2 ... especially for documents

Criterion Definition

Structured Correct, comprehensible structure of the document

Topicality The document reflects the current status of the requirement

Modifiability Changes to the requirement should be easy to make

Accessibility Controlled access for all stakeholders

Projectability Different views of the document possible, depending on the user role

Relevance The document does not contain information irrelevant to the problem de-
scription

8 Quality assurance
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 39 © TH Cologne

8.3 Quality assurance methods

At the beginning of a project, mainly constructive techniques are used. If the requirements iden-
tified are stable, analytical techniques should be used instead.

General principles for testing re-
quirements

Checklist for constructive quality assurance (
during requirements determination)

• Involvement of the right stake-

holders

• Separation of troubleshooting

and error

correction

• Testing from different views

• Repeated test

• Consistently defined and adhered to the type and

level of detail of the requirement?

• Goal and scope of the system comprehensively de-

scribed?

• All requirements considered?

• Requirements documented using standard tem-

plates?

8.3.1 Analytical quality assurance techniques

Technology Works how? When to use?

Perspective ba-
sed reading

Reviewer reads a document and explicitly
assumes a specific stakeholder role (e.g.
customer, user, architect, tester, devel-
oper, ...)

Mostly in combination with
review techniques

Review:
Opinion

Author asks reviewer about opinion on
document

Small projects, fast imple-
mentation, non-formal

Review:
Walkthrough

Author guides group of reviewers through
the artifact so that questions and com-
ments can be contributed. Reviewers
have read document in advance. Results
are recorded.

Medium to large projects
without major quality con-
straints

Review:
Inspection

Very formal statement with different
phases: Planning, preliminary meeting, in-
dividual preparation, review meeting, fol-
low-up and evaluation. Very heavyweight.

Projects with high quality re-
quirements, very heavy /
time intensive

Check require-
ments through
prototypes

A portion of the system (often referred to
as a "horizontal cut-through" is prototyped
according to requirements and evaluated
by stakeholders.

Technical / critical systems,
resource intensive

8.4 Further reading

• Pohl and Rupp, 2011, pp. 101-117

• Rupp, 2014, pp. 287-298

• Schienmann, 2002, pp. 176-185

9 Creating an agile backlog
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 40 © TH Cologne

9 Creating an agile backlog

Agile requirements (unlike document-centric requirements elicitation, which is aligned with a wa-
terfall development process) are initially only roughly recorded. A detailed specification is only
made immediately before implementation, then usually as user stories.

9.1 Glossary / Clarification of terms

Term Definition Do you need for ...

(Investment)
Theme

Common "mission" for a large in-
terrelated set of features, taking
into account business strategies

In general, the theme describes a new IT
system to be created, or one of its main
areas.

Epic Roughly granular, general require-
ment that is further detailed in
User Stories.

An Epic roughly specifies an area of the
IT system that a development team imple-
ments over an extended period of time.

• 1 Theme = <n> Epics

User Story Describes concretely what a sys-
tem should do from the point of
view of a user.

Requirement unit defined for a develop-
ment sprint (2-4 weeks).

• 1 Epic = <n> User Stories

• I.a.: Epic >= Use Case >= User Story

• User story must be completed in one

sprint

Task Individual tasks for a story, e.g.
writing specific pieces of code

Detailing of a user story; in contrast to the
user story, the task usually has a technical
reference.

• 1 User Story = <n> Tasks

Iteration (Sprint) Fixed time unit (2-4 weeks) in
which the development team im-
plements a certain amount of user
stories.

Features are planned in releases and im-
plemented in iterations / sprints.

Release Long-term feature timing.

Product Backlog Collection of prioritized require-
ments (Investment Themes,
Epics, User Stories).

The further away the implementation date
is, the more coarsely the requirement can
be formulated.

Sprint Backlog Extracting user stories from the
product backlog to implement
them in an iteration / sprint.

Work plan for the sprint.

Product Owner Prioritizes customer requirements
and plans release.

The requirements manager in agile pro-
jects.

9.2 Demarcation (Investment) Theme - Epic - User Story - Task

The following example is adapted and translated from Cohn (n.d.). The requirements describe in
extracts the requirements of a system for managing training services. The following applies: TH
= (Investment) Theme, EP = Epic, US = User Story, TA = Task.

▪ TH: Trainer profile management

9 Creating an agile backlog
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 41 © TH Cologne

▪ TH: Management of courses and events

▪ TH: Provide documentation

o EP: As a user of the portal, I can read FAQ entries.

o EP: As a subject administrator, I can maintain FAQ entries.

− US: As a technical administrator, I can add a new "FAQ" entry with fields
for heading and explanation text, so that I only have to answer recurring
customer questions once

− US: As a subject administrator, I can format my FAQ explanation text with
wiki markup so that I can easily structure the text and make it readable.

• TA: Definition of the format for the wiki markup

• TA: Implement configuration database for the allowed wiki markup.

• TA: Implement Wiki => HTML Converter

9.3 Template: User Story

Component Content Example

As <role>, Role of the user from whose
perspective this requirement
is described

As a professional administrator of our
customer portal,

I can
<activity>,

Main part of the user story:
what should the IT system en-
able the user to do?

I can add a new "FAQ" entry with fields
for heading and explanation text,

so that
<business value>.

Reason why the user story
makes sense to the user (use-
ful for prioritization).

so that I only have to answer recurring
customer questions once.

9.3.1 Wording Rules: Make sure that "INVEST" applies to user stories

▪ Independent

▪ Negotiable

▪ Valuable

▪ Estimable

▪ Small

▪ Testable

9.3.2 Division rules for user stories (after Leffingwell, 2010, p. 112f.)

There is a tendency to formulate user stories "too big". Rule of thumb: A user story must be so
small that a developer can implement at least one user story (preferably several) in a sprint.

If the development team gives feedback during sprint planning that the user story is too big, the
product owner can break it down into several individual stories using the following rules.

No. Method of split-
ting

Example before Example behind

1 Decomposition
of the activity
steps

As a subject administrator, I
want to edit a blog post, save
it, and then publish the
changed version.

• ... I would like to edit and save

...

• ... I would like to trigger the

publication ...

2 Decomposition
according to
CRUD (Create /

As a customer, I can manage
my account myself, ...

• ... Create account ...

• ... Read account data ...

9 Creating an agile backlog
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 42 © TH Cologne

Read / Update /
Delete)

• ... Change account data ...

• ... Delete account ...

3 Decompose by
data attribute

... I would like to filter the cus-
tomer data by address attrib-
utes ...

• ... by zip code ...

• ... by state ...

4 Decompose by
Data type

As a customer, I would like to
be able to pay by credit card,
...

• ... by Visa card ...

• ... by Master Card ...

5 Decompose by
database

As a customer in the EU, I
would like to read emails from
the portal in my national lan-
guage, ...

• As a customer in Germany ...

• As a customer in France ...

• As a customer in Italy ...

6 Add
Variation: "Sim-
ple solution first

As a subject administrator, I
can edit a blog post to
"WYSIWIG", ...

• ... as simple ASCII text ...

• ... as ASCII text with wiki

markup ...

• ... after "WYSIWIG" ...

7 Add
variation:
Input type

As a clerk, I can edit the price
of a quote, ...

• ... in the price field of the details

view ...

• ... additionally via inline editing

in the overview table ...

9.4 Further reading

• Cohn, 2004, pp. 17-30 and 75-84.

• Cohn, (n.d.)

• Leffingwell, 2010, pp. 31-45, 83-92, and 99-117.

10 Appendix: Literature
Requirements Management (Computer Science Master) | © S. Bente, F. Krampe - TH Köln

SoSe 2021

Page 43 © TH Cologne

10 Appendix: Literature

• Bono, E. de. (1989). Six-color thinking. A new training model. Düsseldorf: Econ.

• Calabria, T. (2004). An introduction to personas and how to create them. Retrieved April

30, 2015, from http://www.steptwo.com.au/papers/kmc_personas/index.html

• Cockburn, A. (2000). Writing effective use cases. Boston: Addison Wesley.

• Cohn, M. (2004). User Stories Applied: For Agile Software Development (1st ed.). Addi-

son-Wesley Professional.

• Cohn, M. (n.d.). Product Backlog Example. Retrieved January 20, 2019, from

https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/product-backlog/exam-

ple

• Cooper, A. (1999). The Inmates are Running the Asylum: Why Hightech Products Drive

Us Crazy and How to Restore the Sanity (First Printing). Indianapolis, Ind: Sams.

• Ebert, C. (2014). Systematic requirements engineering: elicit, document, analyze, and

manage requirements (5th, revised ed.). Heidelberg: dpunkt.verlag GmbH.

• Gürtler, J., & Meyer, J. (2013). 30 minutes of design thinking. Offenbach: GABAL.

• Kintz, M. (2007). Personas (Requirements engineering advanced seminar). Retrieved

from http://www.iste.uni-stuttgart.de/fileadmin/user_upload/iste/se/teach-

ing/courses/hsre/res-WS2007-2008/HSRE-WS0708-Maximilien_Kintz-Personas.pdf

• Leffingwell, D. (2010). Agile software requirements: Lean requirements practices for

teams, programs, and the enterprise (1st ed.). Upper Saddle River, NJ: Addison Wesley.

• Leffingwell, D., Widrig, D., & Yourdon, E. (2003). Managing software requirements: A use

case approach (0002 ed.). Boston: Addison Wesley Pub Co Inc.

• Pichler, R. (2013). Agiles Produktmanagement mit Scrum: Erfolgreich als Product Owner

arbeiten (2nd, corrected edition). Heidelberg: dpunkt.verlag GmbH.

• Pohl, K. (2008). Requirements engineering: fundamentals, principles,techniques (2nd,

corrected edition.). Heidelberg: dpunkt.Verlag GmbH.

• Pohl, K., & Rupp, C. (2011). Basiswissen Requirements Engineering: Aus- und Weiter-

bildung nach IREB-Standard zum Certified Professional for Requirements Engineering

Foundation Level (3., korrigierte Auflage). dpunkt.verlag GmbH.

• Rupp, C., & the SOPHISTs (2014). Requirements engineering and management: From

practice from classical to agile (6th, updated and expanded edition). Munich: Carl Hanser

Verlag GmbH & Co. KG.

• Schienmann, B. (2001). Continuous requirements management . Processes - techniques

- tools (1st ed.). Munich ; Boston et al: Addison-Wesley.

• SOPHISTs, the. (2014). Requirements engineering - the little RE primer. Self-published.

Retrieved from https://www.sophist.de/fileadmin/SOPHIST/Puplika-

tionen/Broschueren/RE-Broschuere_Komplett_Final_-_Update_1.pdf

• Weit e.V. (2006). The V-Modell XT, Version 2.2. http://ftp.tu-clausthal.de/pub/institute/in-

formatik/v-modell-xt/Releases/2.2/V-Modell-XT-Gesamt.pdf, retrieved 20 Jan. 2019.

• Werner, S. (2006). Fundamentals of program design engineering 1. Retrieved from

http://ti.uni-due.de/ti/de/education/teaching/ss06/pet/folien/Folien%201.pdf

